[1] |
GHOREYSHI M, JIRASEK A, CUMMINGS R M. Computational investigation into the use of response functions for aerodynamic-load modeling[J]. AIAA Journal, 2012, 50(6):1314-1327.
|
[2] |
MCCRACKEN A J, KENNETT D J, BADCOCK K J, et al. Assessment of tabular models using CFD:AIAA-2013-4978[R]. Reston:AIAA, 2013.
|
[3] |
GHOREYSHI M, JIRASEK A, CUMMINGS R M. Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics[J]. Progress in Aerospace Sciences, 2014, 71:167-217.
|
[4] |
LUCIA D J, BERAN P S, SILVA W A. Reduced-order modeling:New approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40(1-2):51-117.
|
[5] |
汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8):2331-2347. WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2331-2347(in Chinese).
|
[6] |
SILVA W A. Application of nonlinear systems theory to transonic unsteady aerodynamic responses[J]. Journal of Aircraft, 1993, 30(5):660-668.
|
[7] |
陈森林, 高正红, 饶丹. 基于多小波的Volterra级数非定常气动力建模方法[J]. 航空学报, 2018, 39(1):121379. CHEN S L, GAO Z H, RAO D. Unsteady aerodynamics modeling method using Volterra series based on multiwavelet[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121379(in Chinese).
|
[8] |
GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5):1109-1115.
|
[9] |
VINOGRADOV Y A, ZHUK A N, KOLINKO K A, et al. Mathematical simulation of dynamic effects of unsteady aerodynamics due to canard flow separation delay[J]. TsAGI Science Journal, 2011, 42(5):655-668.
|
[10] |
龚正, 沈宏良. 非定常气动力非线性微分方程建模方法[J]. 航空学报, 2011, 32(1):83-90. GONG Z, SHEN H L. Unsteady aerodynamic modeling method using nonlinear differential equations[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):83-90(in Chinese).
|
[11] |
WANG Q, HE K F, QIAN W Q, et al. Unsteady aerodynamics modeling for flight dynamics application[J]. Acta Mechanica Sinica, 2012, 28(1):14-23.
|
[12] |
汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识[J]. 航空学报, 1996, 17(4):391-398. WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4):391-398(in Chinese).
|
[13] |
GHOREYSHI M, JIRASEK A, CUMMINGS R M. Computational approximation of nonlinear unsteady aerodynamics using an aerodynamic model hierarchy[J]. Aerospace Science and Technology, 2013, 28(1):133-144.
|
[14] |
BRANDON J M, MORELLI E A. Nonlinear aerodynamic modeling from flight data using advanced piloted maneuvers and fuzzy logic:NASA-TM-2012-217778[R]. Washington, D.C.:NASA, 2012.
|
[15] |
WANG Q, QIAN W, HE K. Unsteady aerodynamic modeling at high angles of attack using support vector machines[J]. Chinese Journal of Aeronautics, 2015, 28(3):659-668.
|
[16] |
CHEN G, ZUO Y, SUN J, et al. Support-vector-machine-based reduced-order model for limit cycle oscillation prediction of nonlinear aeroelastic system[J]. Mathematical Problems in Engineering, 2012.
|
[17] |
VAPNIK V. The nature of statistical learning theory[M]. New York:Springer-Verlag, 1995:161-206.
|
[18] |
BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
|
[19] |
SMOLA A J, SCHOLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3):199-222.
|
[20] |
SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300.
|
[21] |
MORELLI E, DERRY S, SMITH M. Aerodynamic parameter estimation for the X-43A (hyper-x) from flight data:AIAA-2005-5921[R]. Reston:AIAA, 2005.
|
[22] |
MORELLI E. Flight-test experiment design for characterizing stability and control of hypersonic vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3):949-959.
|
[23] |
CHENG C M, PENG Z K, ZHANG W M, et al. Wavelet basis expansion-based Volterra kernel function identification through multilevel excitations[J]. Nonlinear Dynamics, 2014, 76(2):985-999.
|
[24] |
TRONCHIN L. The emulation of nonlinear time-invariant audio systems with memory by means of Volterra series[J]. Journal of the Audio Engineering Society, 2012, 60(12):984-996.
|
[25] |
TISCHLER M B, REMPLE R K. 飞机和旋翼机系统辨识:工程方法和飞行试验案例[M]. 张怡哲, 左军毅, 译. 北京:航空工业出版社, 2012:75-76. TISCHLER M B, REMPLE R K. Aircraft and rotorcraft system identification:Engineering methods with flight-test examples[M]. ZHANG Y Z, ZUO J Y, translated. Beijing:Aviation Industry Press, 2012:75-76(in Chinese).
|
[26] |
PRAZENICA R J, KURDILA A J. Multiwavelet constructions and Volterra kernel identification[J]. Nonlinear Dynamics, 2006, 43(3):277-310.
|
[27] |
CHEN S, GAO Z. Unsteady aerodynamics modeling using Volterra series expansed by basis function[C]//2018 Asia Conference on Mechanical Engineering and Aerospace Engineering. Wuhan:EDP Sciences, 2018.
|
[28] |
SCHROEDER M. Synthesis of low-peak-factor signals and binary sequences with low autocorrelation[J]. IEEE Transactions on Information Theory, 1970, 16(1):85-89.
|
[29] |
IGNATYEV D I, KHRABROV A N. Neural network modeling of unsteady aerodynamic characteristics at high angles of attack[J]. Aerospace Science and Technology, 2015, 41:106-115.
|
[30] |
史志伟, 王峥华, 李俊成. 径向基神经网络在非线性非定常气动力建模中的应用研究[J]. 空气动力学学报, 2012, 30(1):108-112. SHI Z W, WANG Z H, LI J C. The research of RBFNN in modeling of nonlinear unsteady aerodynamics[J]. Acta Aerodynamica Sinica, 2012, 30(1):108-112(in Chinese).
|
[31] |
CAWLEY G C, TALBOT N L C. Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters[J]. Journal of Machine Learning Research, 2007, 8:8841-861.
|
[32] |
NASA. CFL3D[CP]. https://github.com/nasa/cfl3d.
|
[33] |
TINOCO E N, BRODERSEN O, KEYE S, et al. Summary of data from the sixth AIAA CFD drag prediction workshop:CRM cases 2 to 5:AIAA-2017-1208[R]. Reston:AIAA, 2017.
|
[34] |
MANI M, RIDER B J, SCLAFANI A J, et al. Reynolds-averaged Navier-Stokes technology for transonic drag prediction:A Boeing perspective[J]. Journal of Aircraft, 2014, 51(4):1118-1134.
|
[35] |
PARK M A, LAFLIN K R, CHAFFIN M S, et al. CFL3D, FUN3D, and NSU3D contributions to the fifth drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1268-1283.
|