[1] Chen L, Wu Z G, Yang C, et al. Active control and wind tunnel test verification of multi control surfaces wing for gust alleviation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2250-2256 (in Chinese). 陈磊, 吴志刚, 杨超, 等. 多控制面机翼阵风减缓主动控制与风洞试验验证[J]. 航空学报, 2009, 30(12): 2250-2256.
[2] Zhang W, Zhang W W, Quan J G, et al. Gust alleviation of transonic wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 962-969 (in Chinese). 张慰, 张伟伟, 全景阁, 等. 跨声速机翼阵风减缓研究[J]. 力学学报, 2012, 44(6): 962-969.
[3] Raveh D E. CFD-based models of aerodynamic gust response, AIAA-2006-2022[R]. Reston: AIAA, 2006.
[4] Chen G, Wang X, Li Y M. A reduced-order-model-based multiple-in multiple-out gust alleviation control law design method in transonic flow[J]. Science China Technological Sciences, 2014, 57(2): 368-378.
[5] Moulin B, Karpel M. Gust loads alleviation using special control surfaces[J]. Journal of Aircraft, 2007, 44(1): 17-24.
[6] Shao K, Wu Z G, Yang C, et al. Design of an adaptive gust response alleviation control system: simulations and experiments[J]. Journal of Aircraft, 2010, 47(3): 1022-1029.
[7] Ricci S, Scotti A. Gust response alleviation on flexible aircraft using multi-surface control, AIAA-2010-3117[R]. Reston: AIAA, 2010.
[8] Zeng J, Moulin B, Callafon R D. Adaptive feedforward control for gust load alleviation[J]. Journal of Guidance, Control, and Dynamic, 2010, 33(3): 862-872.
[9] Raveh D E. Gust-response analysis of free elastic aircraft in the transonic flight regime[J]. Journal of Aircraft, 2011, 48(4): 1204-1211.
[10] Robert E B. Development, verification and use of gust modeling in the nasa computational fluid dynamics code fun3d, NASA/TM-2012-217771[R]. Washington, D. C.: NASA, 2012.
[11] Chen G, Li Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics, 2011, 41(6): 686-701 (in Chinese). 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6): 686-701.
[12] Liu X Y, Yang C, Wu Z G. Wavelet based reduced-order method for unsteady aerodynamics applicable to aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1149-1155 (in Chinese). 刘晓燕, 杨超, 吴志刚. 适用于气动弹性的小波非定常气动力降阶方法[J]. 航空学报, 2010, 31(6): 1149-1155.
[13] Dillsaver M J, Cesnik C E, Kolmanovsky I V. Gust load alleviation control for very flexible aircraft. AIAA-2011-6368[R]. Reston: AIAA, 2011.
[14] Ma D L. An improvement of the digital simulation method for atmospheric turbulence[J]. Journal of Beijing University of Aeronautics and Astronautics, 1990(3): 57-63 (in Chinese). 马东立.大气紊流数字仿真的改进方法[J]. 北京航空航天大学学报, 1990(3): 57-63.
[15] Yang G W, Wang J K. Gust response prediction with CFD-based reduced order modeling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 145-153 (in Chinese). 杨国伟, 王济康. CFD结合降阶模型预测阵风响应[J]. 力学学报, 2008, 40(2): 145-153.
[16] Nie X Y, Yang G W. Identification of unsteady aerodynamic model CFD-Based for aeroelastic numerical computation[J]. Journal of Vibration and Shock, 2014, 33(20): 20-25 (in Chinese). 聂雪媛, 杨国伟. 基于CFD气动力辨识模型的气动弹性数值计算[J]. 振动与冲击, 2014, 33(20): 20-25.
[17] Xiong G, Yang C. Application of balanced truncation method on aeroservoelastic model reduction[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(3): 168-170 (in Chinese). 熊纲, 杨超. 平衡截断方法在气动伺服弹性系统模型降阶中的应用[J]. 航空学报, 2001, 22(3): 168-170.
[18] Carson Y J E. Agard standard aeroelastic configurations for dynamic response I-wing 445.6, AGARD-R-756[R]. Washington, D. C.: NASA Langley Research Center, 1988. |