[1] 杨俊斌, 吴志刚, 戴玉婷, 等. 飞翼布局飞机阵风减缓主动控制风洞试验[J]. 北京航空航天大学学报, 2017, 43(1): 184-192. YANG J B, WU Z G, DAI Y T, et al. Wind tunnel test of gust alleviation active control for flying wing configuration aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 184-192(in Chinese). [2] 金长江, 肖夜伦. 大气扰动中的飞行原理[M]. 北京: 国防工业出版社, 1992: 1-7. JIN C J, XIAO Y L. Flight principle in atmospheric disturbance[M]. Beijing: National Defense Industry Press, 1992: 1-7(in Chinese). [3] WRIGHT J R, COOPER J E. Introduction to aircraft aeroelasticity and loads[M]. West Sussex: John Wiley and Sons Ltd, 2015: 293-326. [4] MURROW H, PRATT K, HOUBOLT J. NACA/NASA research related to evolution of US gust design criteria[C]//30th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1989. [5] FULLER J R. Evolution of airplane gust loads design requirements[J]. Journal of Aircraft, 1995, 32(2): 235-246. [6] 岑飞, 李清, 刘志涛, 等. 民机极限飞行状态的动态气动力试验与建模[J]. 航空学报, 2020, 41(8): 123664. CEN F, LI Q, LIU Z T, et al. Unsteady aerodynamics test and modeling of civil aircraft under extreme flight conditions[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123664(in Chinese). [7] SU W H, CESNIK C E S. Dynamic response of highly flexible flying wings[J]. AIAA Journal, 2011, 49(2): 324-339. [8] RAGHAVAN B, PATIL M J. Flight control for flexible, high-aspect-ratio flying wings[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 64-74. [9] 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418. MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418(in Chinese). [10] HOBLIT F M. Gust loads on aircraft: Concepts and applications[M]. Washington, D.C.: AIAA, 1988: 115-186. [11] PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow[J]. Journal of Aircraft, 2000, 37(5): 753-760. [12] PATIL M J, HODGES D H. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings[J]. Journal of Fluids and Structures, 2004, 19(7): 905-915. [13] PETERS D A, KARUNAMOORTHY S, CAO W M. Finite state induced flow models. I—Two-dimensional thin airfoil[J]. Journal of Aircraft, 1995, 32(2): 313-322. [14] KARPEL M. Time-domain aeroservoelastic modeling using weighted unsteady aerodynamic forces[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(1): 30-37. [15] ZOLE A, KARPEL M. Continuous gust response and sensitivity derivatives using state-space models[J]. Journal of Aircraft, 1994, 31(5): 1212-1214. [16] KARPEL M, MOULIN B, CHEN P C. Dynamic response of aeroservoelastic systems to gust excitation[J]. Journal of Aircraft, 2005, 42(5): 1264-1272. [17] KIER T. Comparison of unsteady aerodynamic modelling methodologies with respect to flight loads analysis[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2005. [18] 陈浩, 袁先旭, 毕林, 等. 基于RANS/LES混合方法的分离流动模拟[J]. 航空学报, 2020, 41(8): 123642. CHEN H, YUAN X X, BI L, et al. Simulation of separated flow based on RANS/LES hybrid method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123642(in Chinese). [19] PALACIOS R, CESNIK C. Static nonlinear aeroelasticity of flexible slender wings in compressible flow[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005. [20] HALLISSY B, CESNIK C. High-fidelity aeroelastic analysis of very flexible aircraft[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011. [21] 闵耀兵, 马燕凯, 李松. CFD中统计误差的数值精度分析[J]. 航空学报, 2020, 41(4): 123554. MIN Y B, MA Y K, LI S. Accuracy analysis of numerical error with statistical forms in CFD[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 123554(in Chinese). [22] 王年华, 常兴华, 赵钟, 等. 非结构CFD软件MPI+OpenMP混合并行及超大规模非定常并行计算的应用[J]. 航空学报, 2020, 41(10): 123859. WANG N H, CHANG X H, ZHAO Z, et al. Implementation of hybrid MPI+OpenMP parallelization on unstructured CFD solver and its applications in massive unsteady simulations[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123859(in Chinese). [23] COWAN T J. Efficient aeroelastic CFD predictions using system identification[D]. Oklahoma: Oklahoma State University, 1998: 11-15. [24] TORII H, MATSUZAKI Y. Flutter margin evaluation for discrete-time systems[J]. Journal of Aircraft, 2001, 38(1): 42-47. [25] 杨国伟, 王济康. CFD结合降阶模型预测阵风响应[J]. 力学学报, 2008, 40(2): 145-153. YANG G W, WANG J K. Gust response prediction with cfd-based reduced order modeling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 145-153(in Chinese). [26] 张伟伟, 叶正寅. 基于气动力降阶模型的跨音速气动弹性稳定性分析[J]. 计算力学学报, 2007, 24(6): 768-772. ZHANG W W, YE Z Y. Transonic aeroelastic analysis basing on reduced order aerodynamic models[J]. Chinese Journal of Computational Mechanics, 2007, 24(6): 768-772(in Chinese). [27] 张伟伟, 叶正寅. 大后掠翼前缘涡对其颤振特性的影响[J]. 航空学报, 2009, 30(12): 2263-2268. ZHANG W W, YE Z Y. Effects of leading-edge vortex on flutter characteristics of high sweep angle wing[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2263-2268(in Chinese). [28] ZHANG W W, YE Z Y. Effect of control surface on airfoil flutter in transonic flow[J]. Acta Astronautica, 2010, 66(7-8): 999-1007. [29] ZHANG W W, LI X T, YE Z Y, et al. Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers[J]. Journal of Fluid Mechanics, 2015, 783: 72-102. [30] SILVA W A. Discrete-time linear and nonlinear aerodynamic impulse responses for efficient CFD analyses[M]. Williamsburg: The College of William and Mary, 1997: 33-48. [31] MARZOCCA P, SILVA W A, LIBRESCU L. Open/closed-loop nonlinear aeroelasticity for airfoils via Volterra series approach[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002. [32] LIND R, PRAZENICA R J, BRENNER M J, et al. Identifying parameter-dependent Volterra kernels to predict aeroelastic instabilities[J]. AIAA Journal, 2005, 43(12): 2496-2502. [33] PRAZENICA R J, REISENTHEL P H, KURDILA A J, et al. Volterra kernel extrapolation for modeling nonlinear aeroelastic systems at novel flight conditions[J]. Journal of Aircraft, 2007, 44(1): 149-162. [34] OMRAN A, NEWMAN B. Full envelope nonlinear parameter-varying model approach for atmospheric flight dynamics[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 270-283. [35] 王云海, 韩景龙, 张兵, 等. 空气动力二阶核函数辨识方法[J]. 航空学报, 2014, 35(11): 2949-2957. WANG Y H, HAN J L, ZHANG B, et al. Identification method of second-order kernels in aerodynamics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2949-2957(in Chinese). [36] 陈森林, 高正红, 饶丹. 基于多小波的Volterra级数非定常气动力建模方法[J]. 航空学报, 2018, 39(1): 121379. CHEN S L, GAO Z H, RAO D. Unsteady aerodynamics modeling method using Volterra series based on multiwavelet[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 121379(in Chinese). [37] 奚之飞, 徐安, 寇英信, 等. 基于改进粒子群算法辨识Volterra级数的目标机动轨迹预测[J]. 航空学报, 2020, 41(12): 324183. XI Z F, XU A, KOU Y X, et al. Target maneuver trajectory prediction based on Volterra series identified by improved particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 324183(in Chinese). [38] 王超, 王贵东, 白鹏. 飞行仿真气动力数据机器学习建模方法[J]. 空气动力学学报, 2019, 37(3): 488-497. WANG C, WANG G D, BAI P. Machine learning method for aerodynamic modeling based on flight simulation data[J]. Acta Aerodynamica Sinica, 2019, 37(3): 488-497(in Chinese). [39] ZHANG W W, WANG B B, YE Z Y, et al. Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5): 1019-1028. [40] 杨朝旭, 郭毅, 雷廷万, 等. 先进战斗机过失速机动大气数据融合估计方法[J]. 航空学报, 2020, 41(6): 523456. YANG Z X, GUO Y, LEI T W, et al. Air data fusion and estimation method for advanced aircrafts in post-stall maneuver[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523456(in Chinese). [41] KOU J Q, ZHANG W W. Layered reduced-order models for nonlinear aerodynamics and aeroelasticity[J]. Journal of Fluids and Structures, 2017, 68: 174-193. [42] KOU J Q, ZHANG W W. A hybrid reduced-order framework for complex aeroelastic simulations[J]. Aerospace Science and Technology, 2019, 84: 880-894. [43] 何磊, 钱炜祺, 汪清, 等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报, 2019, 37(3): 470-479. HE L, QIAN W Q, WANG Q, et al. Applications of machine learning for aerodynamic characteristics modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 470-479(in Chinese). [44] 陈森林, 高正红, 朱新奇, 等. 非稳定动态过程非定常气动力建模[J]. 航空学报, 2020, 41(8): 123675. CHEN S L, GAO Z H, ZHU X Q, et al. Unsteady aerodynamic modeling of unstable dynamic process[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123675(in Chinese). [45] KOU J Q, ZHANG W W. Reduced-order modeling for nonlinear aeroelasticity with varying Mach numbers[J]. Journal of Aerospace Engineering, 2018, 31(6): 04018105. [46] KOU J Q, ZHANG W W. Multi-kernel neural networks for nonlinear unsteady aerodynamic reduced-order modeling[J]. Aerospace Science and Technology, 2017, 67: 309-326. [47] WINTER M, BREITSAMTER C. Neurofuzzy-model-based unsteady aerodynamic computations across varying freestream conditions[J]. AIAA Journal, 2016, 54(9): 2705-2720. [48] LI K, KOU J Q, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3): 2157-2177. [49] LI W J, LAIMA S J, JIN X W, et al. A novel long short-term memory neural-network-based self-excited force model of limit cycle oscillations of nonlinear flutter for various aerodynamic configurations[J]. Nonlinear Dynamics, 2020, 100(3): 2071-2087. [50] 黄超. 柔性飞翼飞机颤振主动抑制系统建模、设计与验证[D]. 北京: 北京航空航天大学, 2018: 52-55, 76-85, 127. HUANG C. Modeling, design and verification of active flutter suppression system for flexible flying wing aircraft[D]. Beijing: Beihang University, 2018: 52-55, 76-85, 127(in Chinese) [51] SHENG W N, GALBRAITH R, COTON F. A modified dynamic stall model for low Mach numbers[J]. Journal of Solar Energy Engineering, 2007; 130(3): 653. |