张伟, 高正红, 周琳, 夏露
收稿日期:
2020-01-09
修回日期:
2020-04-03
发布日期:
2020-03-26
通讯作者:
高正红
E-mail:zgao@nwpu.edu.cn
基金资助:
ZHANG Wei, GAO Zhenghong, ZHOU Lin, XIA Lu
Received:
2020-01-09
Revised:
2020-04-03
Published:
2020-03-26
Supported by:
摘要: 对于翼型气动隐身设计问题,设计变量的配置对设计结果影响很大,而简单地增加设计变量不能保证得到理想的结果。提出一种适用于代理模型全局优化的自适应参数化方法:利用全局敏感性分析方法——基本效应法,得到设计空间关于目标函数的敏感区域信息,并以此为根据增加设计变量;利用节点插入算法将低维样本在高维空间内进行重构,避免了重新取样的工作量。相对于传统固定设计空间维度方法,自适应参数化方法在设计空间的敏感区域扩展维度,能够更加精准地描述外形并反映目标的变化趋势。通过飞翼布局翼型的气动隐身优化算例,证实自适应参数化方法可以大幅提高优化设计质量和效率。
中图分类号:
张伟, 高正红, 周琳, 夏露. 基于代理模型全局优化的自适应参数化方法[J]. 航空学报, 2020, 41(10): 123815-123815.
ZHANG Wei, GAO Zhenghong, ZHOU Lin, XIA Lu. Adaptive parameterization method for surrogate-based global optimization[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(10): 123815-123815.
[1] ROMAN D, ALLEN J, LIEBECK R. Aerodynamic design challenges of the blended-wing-body subsonic transport[C]//18th Applied Aerodynamics Conference. Reston:AIAA, 2000. [2] ROMAN D, SEAN W. Aerodynamics of high-subsonic blended-wing-body configurations[C]//41st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003. [3] LIEBECK R H. Design of the blended wing body subsonic transport[J].Journal of Aircraft, 2012, 41(1):10-25. [4] KROO I. Innovations in aeronautics[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2004. [5] 张彬乾, 罗烈, 陈真利, 等. 飞翼布局隐身翼型优化设计[J].航空学报, 2014,35(4):957-967. ZHANG B Q,LUO L, CHEN Z L, et al. On stealth airfoil design for flying wing configuration[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(4):957-967(in Chinese). [6] 王超, 高正红, 张伟, 等. 自适应设计空间扩展的高效代理模型气动优化设计方法[J].航空学报, 2018,39(7):40-58. WANG C,GAO Z H,ZHANG W, et al. Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion[J].Acta Aeronautica et Astronautica Sinica, 2018,39(7):40-58(in Chinese). [7] QUEIPO N V, HAFTKA R T, WEI S, et al. Surrogate-based analysis and optimization[J].Progress in Aerospace Sciences, 2005, 41(1):1-28. [8] FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J].Progress in Aerospace Sciences, 2009,45(1):50-79. [9] VINH H, DAM C P V, DWYER H A. Shape optimization for aerodynamic efficiency and low observability[C]//Fluid Dynamic, Plasmadynamics, and Lasers Conference. Reston:AIAA, 1993. [10] RAINO A E, TOIVANEN M J, PERIAUX J. Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms[J].International Journal for Numerical Methods in Fluids, 1999, 30(2):149-159. [11] LEE D S, GONZALEZ L F, SRINIVAS K, et al. Robust evolutionary algorithms for UAV/UCAV aerodynamic and RCS design optimization[J].Computers & Fluids, 2008,37(5):547-564. [12] LEE D S, GONZALEZ L F, SRINIVAS K, et al. Aerodynamic/RCS shape optimization of unmanned aerial vehicles using hierarchical asynchronous parallel evolutionary algorithms[C]//Applied Aerodynamic Conference. Reston:AIAA, 2006. [13] ZHANG Y. Multi-round surrogate-based optimization for benchmark aerodynamic design problems[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016. [14] 李静, 高正红, 黄江涛, 等. 基于CST参数化方法气动优化设计研究[J].空气动力学学报,2012,30(4):443-449. LI J,GAO Z H,HUANG J T, et al. Aerodynamic optimization system based on CST technique[J].Acta Aerodynamica Sinica, 2012, 30(4):443-449(in Chinese). [15] 李焦赞, 高正红. 多变量气动设计问题分层协同优化[J].航空学报, 2013, 34(1):58-65. LI J Z,GAO Z H. Multivariable aerodynamic design based on multilevel collaborative optimization[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(1):58-65(in Chinese). [16] DESIDERI J A, MAJD A B E, JANKA A. Nested and self-adaptive Bezier parameterizations for shape optimization[J].Journal of Computational Physics, 2007, 224(1):117-131. [17] MASTERS D A, TAYLOR N J, RENDALL T, et al. Progressive subdivision curves for aerodynamic shape optimization[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016. [18] ANDERSON G R, NEMEC M, AFTMSMIS M J. Aerodynamic shape optimization benchmarks with error control and automatic parameterization[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015. [19] HAN X, ZINGG D W. An adaptive geometry parametrization for aerodynamic shape optimization[J].Optimization & Engineering, 2014,15(1):69-91. [20] SALTELLI A, ANNONI P, AZZINI I, et al. Variance based sensitivity analysis of model output design and estimator for the total sensitivity index[J].Computer Physics Communications, 2010, 181(2):259-270. [21] MORRIS M D. Factorial sampling plans for preliminary computational experiments[J].Technometrics, 1991, 33(2):161-174. [22] BRAIBANT V, FLEURY C. Shape optimal design using B-splines[J].Computer Methods in Applied Mechanics and Engineering, 1984, 44(3):247-267. [23] KULFAN B. A universal parametric geometry representation method-CST[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2007. [24] HICKS R M, HENNE P A. Wing design by numerical optimization[J].Journal of Aircraft, 1978, 15(7):407-412. [25] MASTERS D A, POOLE D J, TAYLOR N J, et al. Impact of shape parameterization on aerodynamic optimization of benchmark problem[J].Journal of Aircraft, 2017, 54(6):2242-2256. [26] BOEHM W. Inserting new knots into B-spline curves[J].Computer-Aided Design,1980,12(4):199-201. [27] KNOTT E F. A Progression of high-frequency RCS prediction techniques[J].Proceedings of the IEEE, 1985, 73(2):252-264. [28] SEARS W. Flying-wing airplanes-The XB-35/YB-49 program[C]//The Evolution of Aircraft Wing Design, Proceedings of the Symposium. Reston:AIAA, 1980. |
[1] | 王文杰 赵旭 杨龙 李濠君 向粤. 跨速域强地效水平助推滑跑气动机理研究(跨域飞行器关键技术专刊)[J]. 航空学报, 0, (): 0-0. |
[2] | 王迪, 冷岩, 杨龙, 韩忠华, 钱战森. 基于广义Burgers方程的声爆传播特性大气湍流影响[J]. 航空学报, 2023, 44(2): 626318-626318. |
[3] | 丁玉临, 韩忠华, 乔建领, 聂晗, 宋文萍, 宋笔锋. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310-626310. |
[4] | 顾奕然, 黄江涛, 陈树生, 刘德园, 高正红. 基于逆向增广Burgers方程的声爆反演技术[J]. 航空学报, 2023, 44(2): 626258-626258). |
[5] | 施方成, 高振勋, 田雨岩, 蒋崇文, 王田天, 李椿萱. 超声速理想膨胀喷流噪声的大涡模拟[J]. 航空学报, 2023, 44(2): 626266-626266. |
[6] | 乔建领, 韩忠华, 丁玉临, 宋文萍, 宋笔锋. 分层大气湍流场对远场声爆传播的影响[J]. 航空学报, 2023, 44(2): 626350-626350. |
[7] | 赵宾宾, 张恒, 李杰. 翼型结冰状态复杂分离流动数值模拟综述[J]. 航空学报, 2023, 44(1): 627211-627211. |
[8] | 郭琪磊, 桑为民, 牛俊杰, 袁烨. 复杂气象条件下考虑结冰风险的无人机飞行策略[J]. 航空学报, 2023, 44(1): 627518-627518. |
[9] | 康伟 胡仕林 王彦清. 介电弹性薄膜翼型的增升效应机理研究[J]. 航空学报, 0, (): 0-0. |
[10] | 马正雪, 罗振兵, 赵爱红, 周岩, 谢玮, 刘强, 朱寅鑫, 彭文强. 高超声速流场等离子体合成射流逆向喷流特性[J]. 航空学报, 2022, 43(S2): 192-203. |
[11] | 尧少波, 蒋励剑, 赵文文, 卢铮, 吴昌聚, 陈伟芳. 耦合聚类的数据驱动稀薄流非线性本构计算方法[J]. 航空学报, 2022, 43(S2): 40-53. |
[12] | 黄依峰, 曾舒华, 江中正, 陈伟芳. 非线性耦合本构在高空侧向喷流中的数值研究[J]. 航空学报, 2022, 43(S2): 8-22. |
[13] | 刘重晓 王江峰. 滑移流区化学非平衡流中气动热环境的数值模拟[J]. 航空学报, 0, (): 0-0. |
[14] | 梁益铭 李广宁 徐敏. 一种基于机器学习的智能控制数值虚拟飞行方法[J]. 航空学报, 0, (): 0-0. |
[15] | 赵彦, 段卓毅, 丁兴志, 杨体浩, 王猛. 面向飞行试验的混合层流机翼优化设计[J]. 航空学报, 2022, 43(11): 527539-527539. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
访问总数:6658907今日访问:1341版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学