[1] GHOREYSHI M, BADCOCK K J, RONCH A D, et al. Framework for establishing limits of tabular aerodynamic models for flight dynamics analysis[J]. Journal of Aircraft, 2011, 48(1):42-55.[2] GHOREYSHI M, JIRASEK A, CUMMINGS R M. Computational investigation into the use of response functions for aerodynamic-load modeling[J]. AIAA Journal, 2012, 50(6):1314-1327.[3] MCCRACKEN A J, KENNETT D J, BADCOCK K J, et al. Assessment of tabular models using CFD:AIAA-2013-4978[R]. Reston,VA:AIAA, 2013.[4] GHOREYSHI M, JIRASEK A, CUMMINGS R M. Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics[J]. Progress in Aerospace Sciences, 2014, 71:167-217.[5] RONCH A D, BADCOCK K J, KHRABROV A, et al. Modeling of unsteady aerodynamic loads:AIAA-2011-6524[R]. Reston,VA:AIAA, 2011.[6] LUCIA D J, BERAN P S, SILVA W A. Reduced-order modeling:New approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40(1-2):51-117.[7] 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6):686-701. CHEN G, LI Y M. Advances and prospects of the reduced order model for unsteady flow and itsapplication[J]. Advances in Mechanics, 2011, 41(6):686-701(in Chinese).[8] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8):2331-2347. WANG Q, QIAB W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2331-2347(in Chinese).[9] BOYD S, CHUA L O, DESOER C A. Analytical foundations of Volterra series[J]. IMA Journal of Mathematical Control and Information, 1984, 1(3):243-282.[10] 吴志刚, 杨超. 基于Volterra级数的跨音速非定常气动力建模[J]. 北京航空航天大学学报, 2006, 32(4):373-376. WU Z G, YANG C. Volterra series based transonic unsteady aerodynamics modeling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(4):373-376(in Chinese).[11] SILVA W A. Application of nonlinear systems theory to transonic unsteady aerodynamic responses[J]. Journal of Aircraft, 1993, 30(5):660-668.[12] SILVA W A. Reduced-order models based on linear and nonlinear aerodynamic impulse responses:AIAA-1999-1262[R]. Reston,VA:AIAA, 1999.[13] 陈刚. 非定常气动力降阶模型及其应用研究[D]. 西安:西北工业大学, 2004:24-30. CHEN G. Reduced order model for unsteady aerodynamics and itsapplication[D]. Xi'an:Northwestern Polytechnical University, 2004:24-30(in Chinese).[14] BALAJEWICZ M, DOWELL E. Reduced-order modeling of flutter and limit-cycle oscillations using the sparse Volterra series[J]. Journal of Aircraft, 2012, 49(6):1803-1812.[15] PRAZENICA R J, KURDILA A J. Multiwavelet constructions and Volterra kernel identification[J]. Nonlinear Dynamics, 2006, 43(3):277-310.[16] SCHETZEN M. The Volterra and Wiener theories of nonlinear systems[M]. Malabar, Florida:Krieger Pub, 2006:7-9, 80-81.[17] BOYD S, CHUA L O. Fading memory and the problem of approximating nonlinear operators with Volterra series[J]. IEEE Transactions on Circuits and Systems, 1985, 32(11):1150-1161.[18] BRENNER M, JIANG Y, XU Y S. Multiparameter regularization for Volterra kernel identification via multiscale collocation methods[J]. Advances in Computational Mathematics, 2009, 31(4):421-455.[19] BALAJEWICZ M, NITZSCHE F, FESZTY D. Reduced order modeling of nonlinear transonic aerodynamics using a pruned Volterra series:AIAA-2009-2319[R]. Reston,VA:AIAA, 2009.[20] SMITH D A. Identification of nonlinear control models using Volterra-Laguerre series[D]. Ann Arbor:The University of Utah, 2010:21-37.[21] 王云海, 韩景龙, 张兵, 等. 空气动力二阶核函数辨识方法[J]. 航空学报, 2014, 35(11):2949-2957. WANG Y H, HAN J L, ZHANG B, et al. Identification method of second-order kernels in aerodynamics[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2949-2957(in Chinese).[22] SILVA W, RAVEH D. Development of unsteady aerodynamic state-space models from CFD-based pulse responses:AIAA-2001-1213[R]. Reston,VA:AIAA, 2001.[23] TRONCHIN L. The emulation of nonlinear time-invariant audio systems with memory by means of Volterra series[J]. Journal of the Audio Engineering Society, 2012, 60(12):984-996.[24] SHIKI SB, LOPES V Jr, DA SILVA S. Identification of nonlinear structures using discrete-time Volterra series[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2014, 36(3):523-532. |