航空学报 > 2013, Vol. 34 Issue (8): 1806-1814   doi: 10.7527/S1000-6893.2013.0315

基于FFD技术的大型运输机上翘后体气动优化设计

王元元1,2, 张彬乾1, 郭兆电3, 董强3   

  1. 1. 西北工业大学 翼型叶栅空气动力国家重点实验室, 陕西 西安 710072;
    2. 中国航空工业发展研究中心, 北京 100012;
    3. 中航工业第一飞机设计研究院, 陕西 西安 710089
  • 收稿日期:2012-09-25 修回日期:2012-12-02 出版日期:2013-08-25 发布日期:2012-12-18
  • 通讯作者: 张彬乾 E-mail:bqzhang@nwpu.edu.cn
  • 作者简介:王元元 男,博士研究生。主要研究方向:飞行器气动布局设计,航空情报研究。E-mail:wyy_7758521@hotmail.com;张彬乾 男,教授,博士生导师。主要研究方向:飞行器设计,实验流体力学。Tel:029-88494846 E-mail:bqzhang@nwpu.edu.cn

Aerodynamic Optimization Design for Large Upswept Afterbody of Transport Aircraft Based on FFD Technology

WANG Yuanyuan1,2, ZHANG Binqian1, GUO Zhaodian3, DONG Qiang3   

  1. 1. National Key Laboratory of Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Aviation Industry Development Research Centre of China, Beijing 100012, China;
    3. The First Aircraft Institute of AVIC, Xi'an 710089, China
  • Received:2012-09-25 Revised:2012-12-02 Online:2013-08-25 Published:2012-12-18

摘要:

利用非均匀有理B样条(NURBS)基函数属性建立了任意空间的自由变形(FFD)参数化方法,进一步结合无限插值(TFI)变形网格技术、二阶振荡粒子群优化(PSO)算法以及计算流体力学(CFD)数值模拟技术,构建了通用的气动外形优化设计系统。采用该系统对C17运输机上翘后体进行气动优化设计,在满足后体最大宽度、高度以及上翘角不减小的情况下,巡航状态减阻2.6%,压差阻力减小19.8%。流态分析显示,优化后体阻力减小的主要原因是后体截面近圆度的增加以及近圆度沿机身轴线的变化量的减小使得后体周向逆压梯度减小所致。研究结果表明本文建立的基于FFD技术的气动优化设计系统对于大型运输机上翘后体的气动优化设计具有较好的实用性。

关键词: FFD技术, 非均匀有理B样条, 粒子群优化算法, 计算流体力学, 大型运输机, 上翘后体, 气动优化设计

Abstract:

A free-form deformation parameterization (FFD) method is established based on non-uniform rational B-spline (NURBS) basis function. Furthermore, by coupling the transfinite interpolation (TFI) grid deformation technology and computational fluid dynamics (CFD) method with improved particle swarm optimization (PSO) arithmetic,a general aerodynamic optimization design system is constructed. Then, the aerodynamic optimization design system is applied to designing a large upswept afterbody of transport aircraft C17 on the restrictions of nondecreasing maximum structure height, width and upswept angle. The optimized afterbody decreases the total drag by 2.6% and pressure drag by 19.8% respectively. A comparison analysis of the aerodynamic shape and flow pattern reveals that the key factors for the optimized afterbody to decrease the pressure drag greatly are the increased near-roundness of the afterbody cross-section and decreased near-roundness change ratio along the fuselage axis. The two factors enable the adverse pressure gradient along the circumferential direction to become smaller, which can suspend aferbody separation and weaken afterbody vortex strength. The aerodynamic optimization design system constructed in this paper has good practicability and engineering application prospect.

Key words: FFD technique, non-uniform rational B-spline, particle swarm optimization, computational fluid dynamics, large transport aircraft, upswept aferbody, aerodynamic optimization design

中图分类号: