Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (3): 228726-228726.doi: 10.7527/S1000-6893.2023.28726
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Haoda LI1, Teng LONG1,2, Renhe SHI1,3(), Nianhui YE1
Received:
2023-03-21
Revised:
2023-04-25
Accepted:
2023-05-26
Online:
2024-02-15
Published:
2023-06-02
Contact:
Renhe SHI
E-mail:srenhe@163.com
CLC Number:
Haoda LI, Teng LONG, Renhe SHI, Nianhui YE. Kriging?based mixed?integer optimization method using sample mapping mechanism for flight vehicle design[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 228726-228726.
Table 1
Concepts involved in building/updating Kriging surrogates
名词 | 符号 | 内涵 |
---|---|---|
样本点种子集 | 由Maximin拉丁超方试验设计方法在连续空间内生成的点集,该点集中的样本点尚未映射至连续-离散空间内 | |
备选样本点集 | 由样本点种子的连续设计变量值以及各离散变量的可能取值集合确定的样本点集,该集合中的所有样本点均位于连续-离散空间内 | |
真实样本点集 | 用于构建/更新Kriging代理模型的样本点集,该集合中的所有样本点均位于连续-离散空间内 | |
初始点集 | 由序列二次规划方法求解近似优化问题的不同初始点组成的点集,该集合中的所有点均位于连续空间内 | |
伪最优解种子集 | 由序列二次规划方法求解近似优化问题所得的各局部最优解组成的点集,该集合中的所有点均位于连续空间内 | |
期望改善度准则辨识的 新增样本点 | 由期望改善度准则辨识的新增样本点,位于连续-离散空间内 | |
基于重点采样空间辨识的 新增样本点集 | 基于重点采样空间方法辨识的新增样本点集,该集合中的所有点均位于连续-离散空间内 |
Table 4
Optimization result comparison on numerical discrete⁃continuous benchmarks⁃Ⅰ
方法 | 指标 | CF | Nvs | Rast12 | Ex | Aex | G10 | G7 |
---|---|---|---|---|---|---|---|---|
SMDK⁃DC | Mean | 0.164 3 | -42.052 5 | -10.649 4 | 0 | -9.498 4 | 16 231.066 7 | 76.471 2 |
STD | 0.071 9 | 0.073 6 | 0.751 1 | 0 | 0.392 3 | 3 202.318 6 | 13.987 8 | |
Best | 0.097 9 | -42.081 8 | -11.977 4 | 0 | -9.951 3 | 12 229.000 0 | 49.865 8 | |
Worst | 0.286 3 | -41.826 8 | -9.033 9 | 0 | -8.927 1 | 22 767.000 0 | 98.740 3 | |
NF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
SOMI | Mean | 0.564 4 | -41.717 3 | -10.635 4 | 0 | -9.414 4 | 18 135.266 6 | 78.135 9 |
STD | 0.049 0 | 0.379 9 | 0.081 7 | 0 | 0.106 9 | 8.421 6 | 7.553 5 | |
Best | 0.432 0 | -42.022 0 | -10.824 4 | 0 | -9.542 1 | 18 118.000 0 | 63.079 8 | |
Worst | 0.647 0 | -40.607 8 | -10.553 1 | 0 | -9.163 2 | 18 144.000 0 | 89.537 7 | |
NF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
EGO | Mean | 0.170 4 | -42.081 8 | -7.600 3 | 1.773 8 | -6.459 9 | 21 708.533 3 | 1 619.445 1 |
STD | 0.178 5 | 0 | 1.015 1 | 1.983 9 | 2.064 0 | 3 287.223 5 | 679.034 2 | |
Best | 0.012 6 | -42.081 8 | -9.938 0 | 0 | -9.589 9 | 15 026.000 0 | 315.578 8 | |
Worst | 0.529 4 | -42.081 8 | -6.237 8 | 6.010 5 | -3.579 5 | 26 888.000 0 | 2 875.478 1 | |
NF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
NOMAD | Mean | 0.004 1 | -42.081 3 | -10.286 4 | 0 | -9.676 2 | 217.932 1 | |
STD | 0.008 0 | 0.001 9 | 1.994 4 | 0 | 0.210 7 | 253.757 2 | ||
Best | 0 | -42.081 8 | -11.979 5 | 0 | -9.920 0 | 49.504 6 | ||
Worst | 0.023 6 | -42.074 3 | -5.320 4 | 0 | -9.078 5 | 1 042.719 9 | ||
NF | 0 | 0 | 0 | 0 | 0 | 30 | 2 |
Table 5
Optimization result comparison on numerical discrete-continuous benchmarks-Ⅱ
方法 | 指标 | G1 | SR | GTCD4 | CPSD1 | CPSD2 | CPSD3 | PVD | GPO |
---|---|---|---|---|---|---|---|---|---|
SMDK-DC | Mean | -12.978 6 | -0.998 8 | 4 429 874.487 2 | 6.860 0 | 2.000 4 | 1.130 9 | 6 317.632 9 | -75.116 6 |
STD | 0.822 1 | 0.001 8 | 59 326.083 3 | 0.667 4 | 0.000 5 | 0.040 8 | 170.195 6 | 0.047 6 | |
Best | -13.822 5 | -0.999 9 | 4 357 164.732 9 | 6.127 0 | 2.000 0 | 1.090 2 | 6 000.755 8 | -75.134 1 | |
Worst | -11.226 3 | -0.993 1 | 4 600 230.010 7 | 8.436 3 | 2.002 0 | 1.250 0 | 6 625.796 8 | -74.950 4 | |
NF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
SOMI | Mean | -12.663 5 | -0.988 6 | 6 083 668.098 0 | 7.405 2 | 2.489 9 | 1.247 9 | 6 493.021 1 | -73.912 4 |
STD | 1.144 6 | 0.013 3 | 399 536.459 3 | 1.167 5 | 0.297 3 | 0.046 8 | 338.271 0 | 0.601 9 | |
Best | -14.906 8 | -0.999 5 | 4 680 695.857 9 | 5.288 7 | 2.022 5 | 1.173 6 | 6 100.222 3 | -74.816 0 | |
Worst | -11.506 8 | -0.954 9 | 6 302 160.672 0 | 8.858 2 | 2.930 9 | 1.309 3 | 7 200.120 5 | -72.976 9 | |
NF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
EGO | Mean | -4.890 5 | -0.981 0 | 6 091 630.366 1 | 7.301 3 | 2.376 1 | 1.277 1 | 10 727.439 3 | -70.405 5 |
STD | 1.718 8 | 0.012 1 | 1 113 100.380 2 | 0.969 4 | 0.345 5 | 0.068 0 | 3 384.766 7 | 3.497 3 | |
Best | -8.399 0 | -0.997 0 | 4 446 783.893 2 | 5.102 2 | 2.030 7 | 1.143 0 | 6 186.233 4 | -75.115 9 | |
Worst | -2.316 3 | -0.955 3 | 7 488 842.392 8 | 9.052 5 | 3.189 8 | 1.350 0 | 19 035.347 3 | -64.310 0 | |
NF | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
NOMAD | Mean | -8.759 6 | -0.998 1 | 5 628 727.136 4 | 5.542 4 | 2.015 7 | 1.180 8 | 6 345.940 3 | -75.115 1 |
STD | 0 | 0.001 3 | 1 821 853.661 6 | 0.977 4 | 0.061 0 | 0.087 7 | 361.101 6 | 0.027 1 | |
Best | -8.759 6 | -0.999 8 | 4 356 376.928 9 | 4.597 0 | 2.000 0 | 1.076 5 | 6 157.843 0 | -75.133 4 | |
Worst | -8.759 6 | -0.997 0 | 9 126 867.722 6 | 7.952 3 | 2.236 1 | 1.250 0 | 7 283.177 1 | -75.051 8 | |
NF | 28 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
Table 8
Comparison of initial and optimized design variables of solid rocket motor
设计变量 | 符号 | 单位 | 范围 | 初始方案 | SMDK-DC优化方案 | SOMI优化方案 |
---|---|---|---|---|---|---|
燃烧室直径 | m | [1.2,1.4] | 1.3 | 1.363 6 | 1.394 8 | |
理论总冲 | N·s | |||||
内腔前段半径 | m | [0.04,0.08] | 0.06 | 0.078 4 | 0.071 0 | |
内腔中段半径 | m | [0.10,0.16] | 0.13 | 0.130 0 | 0.133 2 | |
内腔后段半径 | m | [0.18,0.24] | 0.21 | 0.183 3 | 0.211 5 | |
翼型体长度 | m | [0.20,0.60] | 0.40 | 0.402 3 | 0.388 3 | |
翼型体高度 | m | [0.35,0.55] | 0.40 | 0.480 9 | 0.493 3 | |
翼型体倾角 | (°) | [ | 45 | 49.851 1 | 45.212 7 | |
喷管喉部半径 | m | [0.10,0.14] | 0.12 | 0.124 5 | 0.113 6 | |
喷管扩张比 | [ | 16 | 12.067 8 | 13.524 7 | ||
喷管收敛半角 | (°) | [45,55] | 50 | 54.133 1 | 49.417 6 | |
喷管扩张半角 | (°) | [ | 15 | 12.433 2 | 15.458 4 | |
翼型体个数 | [ | 10 | 9 | 9 |
Table 9
Comparison of initial and optimized constraints of solid rocket motor
约束条件 | 符号 | 单位 | 范围 | 初始方案 | SMDK-DC优化方案 | SOMI优化方案 |
---|---|---|---|---|---|---|
平均推力 | kN | 233.191 0 | 250.687 6 | 261.568 3 | ||
最大推力与平均推力偏差 | kN | 41.907 7 | 29.598 1 | 16.021 2 | ||
工作时间 | s | 55.341 9 | 58.479 5 | 55.603 1 | ||
出口平均压强 | Pa | 12 964.746 4 | 20 545.626 2 | 20 614.040 9 | ||
喉通比 | 0.326 5 | 0.460 9 | 0.288 6 | |||
燃烧室直径与喷管出口直径差 | m | 0.340 0 | 0.498 8 | 0.559 0 | ||
药柱装填分数 | 0.940 8 | 0.945 2 | 0.942 9 |
1 | MORRISON D R, JACOBSON S H, SAUPPE J J, et al. Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning[J]. Discrete Optimization, 2016, 19: 79-102. |
2 | LIU W L, GONG Y J, CHEN W N, et al. Coordinated charging scheduling of electric vehicles: A mixed-variable differential evolution approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(12): 5094-5109. |
3 | HANSEN P, MLADENOVIĆ N, MORENO PÉREZ J A. Variable neighbourhood search: Methods and applications[J]. 4OR, 2008, 6(4): 319-360. |
4 | NAKARIYAKUL S, CASASENT D P. Adaptive branch and bound algorithm for selecting optimal features[J]. Pattern Recognition Letters, 2007, 28(12): 1415-1427. |
5 | HUSSIEN A G, HASSANIEN A E, HOUSSEIN E H, et al. New binary whale optimization algorithm for discrete optimization problems[J]. Engineering Optimization, 2020, 52(6): 945-959. |
6 | LIU Y C, WANG H D. Surrogate-assisted hybrid evolutionary algorithm with local estimation of distribution for expensive mixed-variable optimization problems[J]. Applied Soft Computing, 2023, 133: 10995. |
7 | ABRAMSON M A, AUDET C, CHRISSIS J W, et al. Mesh adaptive direct search algorithms for mixed variable optimization[J]. Optimization Letters, 2009, 3(1): 35-47. |
8 | 龙腾, 刘建, WANG G G, 等. 基于计算试验设计与代理模型的飞行器近似优化策略探讨[J]. 机械工程学报, 2016, 52(14): 79-105. |
LONG T, LIU J, WANG G G, et al. Discuss on approximate optimization strategies using design of computer experiments and metamodels for flight vehicle design[J]. Journal of Mechanical Engineering, 2016, 52(14): 79-105 (in Chinese). | |
9 | SHANOCK L R, BARAN B E, GENTRY W A, et al. Polynomial regression with response surface analysis: A powerful approach for examining moderation and overcoming limitations of difference scores[J]. Journal of Business and Psychology, 2010, 25(4): 543-554. |
10 | BUHMANN M D. Radial basis functions: Theory and implementations[M]. Cambridge: Cambridge University Press, 2003. |
11 | SIMPSON T W, MAUERY T M, KORTE J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001, 39: 2233-2241. |
12 | KLEIJNEN J P C. Kriging metamodeling in simulation: A review[J]. European Journal of Operational Research, 2009, 192(3): 707-716. |
13 | LI J, CHENG J H, SHI J Y, et al. Brief introduction of back propagation (BP) neural network algorithm and its improvement[C]∥ Advances in Computer Science and Information Engineering. Berlin: Springer, 2012: 553-558. |
14 | LIU Y, ZHAO G, LI G, et al. Analytical robust design optimization based on a hybrid surrogate model by combining polynomial chaos expansion and Gaussian kernel[J]. Structural and Multidisciplinary Optimization, 2022, 65(11): 335. |
15 | JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13. |
16 | LIU B, SUN N, ZHANG Q F, et al. A surrogate model assisted evolutionary algorithm for computationally expensive design optimization problems with discrete variables[C]∥ 2016 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2016: 1650-1657. |
17 | HOLMSTRÖM K, QUTTINEH N H, EDVALL M M. An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization[J]. Optimization and Engineering, 2008, 9(4): 311-339. |
18 | ZHENG L, YANG Y P, FU G Q, et al. A surrogate-based optimization method with dynamic adaptation for high-dimensional mixed-integer problems[J]. Swarm and Evolutionary Computation, 2022, 72: 101099. |
19 | MÜLLER J, SHOEMAKER C A, PICHÉ R. SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems[J]. Computers & Operations Research, 2013, 40(5): 1383-1400. |
20 | JIAO R W, ZENG S Y, LI C H, et al. A complete expected improvement criterion for Gaussian process assisted highly constrained expensive optimization[J]. Information Sciences, 2019, 471: 80-96. |
21 | JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. |
22 | PENG L, LIU L, LONG T, et al. Sequential RBF surrogate-based efficient optimization method for engineering design problems with expensive black-box functions[J]. Chinese Journal of Mechanical Engineering, 2014, 27(6): 1099-1111. |
23 | PENG L, LIU L, LONG T, et al. Truss structure satellite bus geometry-structure optimization involving mixed variables and expensive models using metamodel-based optimization strategy[C]∥ Proceedings of the 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2014. |
24 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese). | |
25 | 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 623344. |
HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344 (in Chinese). | |
26 | YU X B, DUAN Y C, LUO W G. A knee-guided algorithm to solve multi-objective economic emission dispatch problem[J]. Energy, 2022, 259: 124876. |
27 | HALSTRUP M. Black-box optimization of mixed discrete-continuous optimization problems[D]. Dortmund: TU Dortmund University, 2016. |
28 | DATTA D, FIGUEIRA J R. A real-integer-discrete-coded differential evolution[J]. Applied Soft Computing, 2013, 13(9): 3884-3893. |
29 | 叶年辉, 胡少青, 李宏岩, 等. 考虑性能及成本的固体火箭发动机多学科设计优化[J]. 推进技术, 2022, 43(7): 75-84. |
YE N H, HU S Q, LI H Y, et al. Multidisciplinary design optimization for solid rocket motor considering performance and cost[J]. Journal of Propulsion Technology, 2022, 43(7): 75-84 (in Chinese). | |
30 | 鲍福廷, 侯晓. 固体火箭发动机设计[M]. 北京: 中国宇航出版社,2016. |
BAO F T, HOU X. Solid rocket motor design [M]. Beijing: China Astronautic Publishing House, 2016 (in Chinese). | |
31 | WU Z P, WANG D H, ZHANG W H, et al. Solid-rocket-motor performance-matching design framework[J]. Journal of Spacecraft and Rockets, 2017, 54(3): 698-707. |
[1] | Zixu WANG, Pan LI, Ke LU, Zhenhua ZHU, Renliang CHEN. Optimized design of trim strategy for coaxial rigid rotor high-speed helicopter [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529069-529069. |
[2] | Yulian GONG, Jianguo ZHANG, Zhigang WU, Guangyuan CHU, Xiaoduo FAN, Ying HUANG. Reliability algorithm of composite structure based on active learning basis-adaptive PC-Kriging model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 228982-228982. |
[3] | Huan ZHAO, Zhenghong GAO, Lu XIA. Novel multi-fidelity surrogate model assisted many-objective optimization method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 126962-126962. |
[4] | Ting YU, Luyi LI, Yushan LIU, Zeming CHANG. Efficient Bayesian updating method under observation uncertainty and its application in wing structure [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 228592-228592. |
[5] | YE Nianhui, LONG Teng, WU Yufei, TANG Yifan, SHI Renhe. Kriging-assisted constrained differential evolution algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 324580-324580. |
[6] | LONG Teng, MAO Nengfeng, SHI Renhe, WU Yufei, SHEN Dunliang. Mode pursuing sampling intelligent exploring method considering expensive constraints [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 525060-525060. |
[7] | SHI Xunlei, ZHANG Jiwen, LIU Shuntao, CHEN Ken. Correction strategy for hole positions based on Kriging interpolation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 423499-423499. |
[8] | PENG Zhenrui, CAO Mingming, LIU Mandong. Model updating method based on wavelet decomposition of acceleration frequency response function [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 223548-223548. |
[9] | SHI Zhaoyin, LYU Zhenzhou, LI Luyi, WANG Yanping. Cross-entropy importance sampling method based on adaptive Kriging model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 223123-223123. |
[10] | ZHOU Suting, LYU Zhenzhou, LING Chunyan, WANG Yanping. Meta-IS-AK algorithm for estimating global reliability sensitivity [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 223088-223088. |
[11] | LI Baoyu, ZHANG Leigang, QIU Qunhai, YU Xiongqing. An advanced first order and second moment method based on gradient analytical solution of Kriging surrogate model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(5): 222629-222629. |
[12] | WANG Chao, GAO Zhenghong, ZHANG Wei, XIA Lu, HUANG Jiangtao. Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(7): 121745-121745. |
[13] | HAN Shaoqiang, SONG Wenping, HAN Zhonghua, WANG Le. Aerodynamic inverse design method based on gradient-enhanced Kriging model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(7): 120817-120817. |
[14] | FAN Chongqing, LYU Zhenzhou. Global sensitivity analysis method for multivariate output based on fuzzy Hausdorff distance [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(10): 220870-220870. |
[15] | ZHAO Hailong, YUE Zhufeng, LIU Wei. A Kriging surrogate model method for moment-independent importance analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(7): 2234-2241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341