1 |
王俊山, 冯志海, 徐林. 高超声速飞行器用热防护与热结构材料技术[M]. 北京: 科学出版社, 2021: 7-18.
|
|
WANG J S, FENG Z H, XU L. Thermal protection and thermal structural material technology for hypersonic aircraft[M]. Beijing: Science Press, 2021: 7-18 (in Chinese).
|
2 |
EASON T G, SHEPARD M J, PRATT D M. Task order 0015: Predictive capability for hypersonic structural response and life prediction: Phase 1 identification of knowledge gaps, volume 1-nonproprietary version: AFRL-RB-WP-TR-2010-3068[R]. Wright-Patterson Air Force Base: AFRL, 2010.
|
3 |
蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012.
|
|
CAI G B, XU D J. Hypersonic vehicle technology[M]. Beijing: Science Press, 2012 (in Chinese).
|
4 |
孙聪. 高超声速飞行器强度技术的现状、挑战与发展趋势[J]. 航空学报, 2022, 43(6): 527590.
|
|
SUN C. Development status, challenges and trends of strength technology for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 527590 (in Chinese).
|
5 |
孙得川, 李书月. 气动加热的数值仿真及其地面试验模拟技术[J]. 航空兵器, 2023, 30(3): 11-19.
|
|
SUN D C, LI S Y. Numerical simulation of aerodynamic heating and its ground test simulation technology[J]. Aero Weaponry, 2023, 30(3): 11-19 (in Chinese).
|
6 |
朱言旦, 魏东, 刘深深, 等. 石英灯阵模拟非均匀气动加热的功率优化[J]. 航空学报, 2019, 40(6): 122761.
|
|
ZHU Y D, WEI D, LIU S S, et al. Power optimization of non-uniform aerodynamic heating simulated by quartz lamp array[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 122761 (in Chinese).
|
7 |
吴大方, 潘兵, 高镇同, 等. 超高温、大热流、非线性气动热环境试验模拟及测试技术研究[J]. 实验力学, 2012, 27(3): 255-271.
|
|
WU D F, PAN B, GAO Z T, et al. On the experimental simulation of ultra-high temperature, high heat flux and nonlinear aerodynamic heating environment and thermo-machanical testing technique[J]. Journal of Experimental Mechanics, 2012, 27(3): 255-271 (in Chinese).
|
8 |
张伟, 张正平, 李海波, 等. 高超声速飞行器结构热试验技术进展[J]. 强度与环境, 2011, 38(1): 1-8.
|
|
ZHANG W, ZHANG Z P, LI H B, et al. Progress on thermal test technique of hypersonic vehicle structures[J]. Structure & Environment Engineering, 2011, 38(1): 1-8 (in Chinese).
|
9 |
吴大方, 商兰, 高镇同, 等. 1 700 ℃高温、有氧及时变环境下隔热性能试验研究[J]. 宇航学报, 2015, 36(9): 1083-1092.
|
|
WU D F, SHANG L, GAO Z T, et al. Experimental research on thermal-insulation performance under high temperature/oxidation and time-varying environment up to 1 700 ℃[J]. Journal of Astronautics, 2015, 36(9): 1083-1092 (in Chinese).
|
10 |
吴大方, 商兰, 蒲颖, 等. 1 700 ℃有氧环境下高超声速飞行器轻质防热材料隔热性能试验研究[J]. 航天器环境工程, 2016, 33(1): 7-12.
|
|
WU D F, SHANG L, PU Y, et al. Experimental research of thermal-insulation performance of lightweight thermal protection materials for hypersonic aircraft in oxidation environment up to 1 700 ℃[J]. Spacecraft Environment Engineering, 2016, 33(1): 7-12 (in Chinese).
|
11 |
卢明. 热防护材料气动热环境的试验模拟研究[D]. 大连: 大连理工大学, 2019.
|
|
LU M. Experimental research on aerodynamic heating environment for thermal protection materials[D]. Dalian: Dalian University of Technology, 2019 (in Chinese).
|
12 |
董素君, 齐玢, 李志杰, 等. 低速高温燃气流热模拟试验方法和设备[J]. 航空动力学报, 2012, 27(5): 961-968.
|
|
DONG S J, QI B, LI Z J, et al. Approach and facility for aerodynamic thermal test by lower speed and high-temperature gas flow[J]. Journal of Aerospace Power, 2012, 27(5): 961-968 (in Chinese).
|
13 |
张利嵩, 俞继军. 高超声速飞行器热防护技术[M]. 北京: 科学出版社, 2021.
|
|
ZHANG L S, YU J J. Thermal protection technology of hypersonic vehicle[M]. Beijing: Science Press, 2021 (in Chinese).
|
14 |
OKADA M, OKUNI T, INAGAKI M. Operation optimization of superhigh-temperature furnace using graphite heater[J]. Carbon, 2018, 139: 700-708.
|
15 |
OKADA M, OHTA N, YOSHIMOTO O, et al. Review on the high-temperature resistance of graphite in inert atmospheres[J]. Carbon, 2017, 116: 737-743.
|
16 |
张凯. 石墨加热元件及其加热控制方法研究[D]. 北京: 中国航天科技集团公司, 2017.
|
|
ZHANG K. Research on graphite heating element and its heating control methods[D]. Beijing: China Aerospace Science and Technology Corporation, 2017 (in Chinese).
|
17 |
DELPAPA S V, MILHOAN J D, REMARK B J, et al. Thermal testing of ablators in the NASA Johnson space center radiant heat test facility[C]∥Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
|
18 |
李俊楠, 邱义芬, 王奕荣, 等. 基于石墨加热阵的真空超高温环境模拟系统设计[C]∥第二届中国航空科学技术大会论文集, 2015: 837-841.
|
|
LI J N, QIU Y F, WANG Y R, et al. Design of extreme high temperature vacuum environment simulation system based on graphite heating array[C]∥Proceedings of the Second China Aerospace Science and Technology Conference, 2015: 837-841 (in Chinese).
|
19 |
陶文铨. 传热学[M]. 北京: 高等教育出版社, 2018.
|
|
TAO W Q. Heat transfer[M]. Beijing: High Education Press, 2018 (in Chinese).
|
20 |
张淑蓉. 石墨加热元件在真空炉中的应用研究[J]. 工业加热, 2012, 41(5): 66-68.
|
|
ZHANG S R. The application research of the graphite heating elements to the vacuum furnace[J]. Industrial Heating, 2012, 41(5): 66-68 (in Chinese).
|
21 |
刘志民, 成竹, 蒋军亮. 石墨加热器电极放电特性试验研究[J]. 装备环境工程, 2013, 10(3): 36-38, 50.
|
|
LIU Z M, CHENG Z, JIANG J L. Experimental investigation of discharge characteristic of graphite heater electrode[J]. Equipment Environmental Engineering, 2013, 10(3): 36-38, 50 (in Chinese).
|