ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (6): 126962-126962.doi: 10.7527/S1000-6893.2022.26962
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Huan ZHAO, Zhenghong GAO, Lu XIA()
Received:
2022-01-18
Revised:
2022-04-24
Accepted:
2022-05-10
Online:
2023-03-25
Published:
2022-05-19
Contact:
Lu XIA
E-mail:xialu@nwpu.edu.cn
Supported by:
CLC Number:
Huan ZHAO, Zhenghong GAO, Lu XIA. Novel multi-fidelity surrogate model assisted many-objective optimization method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 126962-126962.
Table 1
Comparison of evaluation indexes for Pareto solution set of different surrogate-based optimization algorithms (DTLZ5 function)
评价指标 | M | PEIM (Kriging) | VF-PEIM (AMF-PCK) | VF-PEIM- MVU (AMF-PCK) |
---|---|---|---|---|
DG | 3 4 5 6 7 8 9 10 | 0.004 168 0.023 156 0.099 588 0.162 732 0.249 373 0.310 310 0.345 830 0.375 936 | 0.002 843 0.019 327 0.051 936 0.085 961 0.129 089 0.173 686 0.226 488 0.246 517 | 0.002 851 0.019 202 0.027 132 0.039 857 0.061 359 0.078 415 0.089 161 0.090 110 |
IDG | 3 4 5 6 7 8 9 10 | 0.047 105 0.090 755 0.165 442 0.233 923 0.335 791 0.455 996 0.518 371 0.548 392 | 0.020 380 0.051 071 0.102 738 0.143 751 0.187 405 0.236 759 0.298 305 0.348 044 | 0.020 376 0.050 959 0.080 348 0.096 811 0.127 297 0.149 849 0.161 602 0.182 243 |
Table 3
Eigenvectors (column vector) for corresponding eigenvalues
编号 | |||||||
---|---|---|---|---|---|---|---|
1 | -0.378 453 | -0.379 864 | 0.192 506 | -0.606 614 | 0.418 121 | -0.358 839 | 0.062 019 |
2 | 0.338 424 | -0.143 240 | -0.877 325 | -0.210 015 | 0.154 978 | -0.151 503 | -0.064 613 |
3 | 0.396 686 | -0.391 887 | 0.144 435 | 0.341 405 | 0.226 711 | -0.118 501 | 0.697 285 |
4 | 0.218 579 | 0.671 824 | 0.120 248 | 0.071 135 | 0.639 493 | -0.262 522 | -0.059 045 |
5 | 0.450 237 | 0.131 841 | 0.232 975 | -0.317 968 | -0.538 201 | -0.578 670 | 0.002 027 |
6 | 0.365 525 | -0.458 845 | 0.254 896 | 0.230 028 | 0.203 852 | -0.035 977 | -0.703 646 |
7 | 0.448 089 | 0.048 394 | 0.196 654 | -0.558 818 | 0.097 934 | 0.655 109 | 0.084 646 |
Table 5
Aerodynamic characteristics of 7% airfoils
Airfoil | Madd0 | Ma=0.87 | Ma=0.60 | Ma=0.50 | Ma=0.40 | Ma=0.30 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cd0 | Cm0 | Clmax | Kmax | Clmax | Kmax | Clmax | Kmax | Clmax | Kmax | ||
OA407 | 0.854 | 0.010 84 | -0.029 5 | 0.911 1 | 75.77 | 1.083 7 | 90.77 | 1.182 2 | 86.18 | 1.262 1 | 80.64 |
OPT0701 | 0.861 | 0.008 92 | -0.023 2 | 0.946 7 | 76.81 | 1.098 3 | 91.89 | 1.193 5 | 87.31 | 1.285 6 | 82.55 |
OPT0702 | 0.869 | 0.008 05 | -0.015 2 | 0.923 3 | 76.01 | 1.075 4 | 82.14 | 1.053 5 | 79.77 | 1.120 4 | 76.56 |
OPT0703 | 0.875 | 0.006 73 | -0.003 5 | 0.874 5 | 73.06 | 0.909 8 | 64.50 | 0.947 2 | 61.44 | 0.936 5 | 59.15 |
1 | DEB K, SAXEAN D. Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems[C]∥ Piscataway: IEEE Press, 2006: 3352-3360. |
2 | ISHIBUCHI H, TSUKAMOTO N, NOJIMA Y. Evolutionary many-objective optimization: A short review[C]∥ 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Piscataway: IEEE Press, 2008: 2419-2426. |
3 | PURSHOUSE R C, FLEMING P J. Evolutionary many-objective optimisation: An exploratory analysis[C]∥ The 2003 Congress on Evolutionary Computation. Piscataway: IEEE Press, 2003: 2066-2073. |
4 | SATO H, AGUIRRE H E, TANAKA K. Controlling dominance area of solutions and its impact on the performance of MOEAs[C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 5-20. |
5 | DRECHSLER N, DRECHSLER R, BECKER B. Multi-objective optimisation based on relation favour[C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2001: 154-166. |
6 | KUKKONEN S, LAMPINEN J. Ranking-dominance and many-objective optimization[C]∥ 2007 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, Press 2007: 3983-3990. |
7 | WAGNER T, BEUME N, NAUJOKS B. Pareto-, aggregation-, and indicator-based methods in many-objective optimization[C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 742-756. |
8 | HUGHES E J. Evolutionary many-objective optimisation: Many once or one many?[C]∥ 2005 IEEE Congress on Evolutionary Computation. Piscataway: IEEE Press, 2005 : 222-227. |
9 | ISHIBUCHI H, DOI T, NOJIMA Y. Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms[C]∥ Parallel Problem Solving from Nature - PPSN IX. Berlin: Springer, 2006: 493-502. |
10 | ISHIBUCHI H, NOJIMA Y. Optimization of scalarizing functions through evolutionary multiobjective optimization [C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 51-65. |
11 | DEB K, SUNDAR J. Reference point based multi-objective optimization using evolutionary algorithms [C]∥ Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2006: 635-642. |
12 | BROCKHOFF D, ZITZLER E. Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective Optimization[C]∥ Parallel Problem Solving from Nature - PPSN IX. Berlin: Springer, 2006: 533-542. |
13 | JAIMES A L, COELLO COELLO C A, CHAKRABORTY D. Objective reduction using a feature selection technique[C]∥ Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2008: 673-680. |
14 | DEB K, SAXENA D K. On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems [R]. Kanpur: Indian Institute of Technology, 2005. |
15 | SINGH H K, ISAACS A, RAY T. A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(4): 539-556. |
16 | ZHAO K, GAO Z H, HUANG J T, et al. Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1541-1552. |
17 | HUANG J T, ZHU Z, GAO Z H, et al. Aerodynamic multi-objective integrated optimization based on principal component analysis[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1336-1348. |
18 | SAXENA D K, DURO J A, TIWARI A, et al. Objective reduction in many-objective optimization: Linear and nonlinear algorithms[J]. IEEE Transactions on Evolutionary Computation, 2012, 17(1): 77-99. |
19 | ZHAO H, GAO Z H, XU F, et al. Review of robust aerodynamic design optimization for air vehicles[J]. Archives of Computational Methods in Engineering, 2019, 26(3): 685-732. |
20 | ZHAO H, GAO Z H. Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles[J]. Engineering Computations, 2019, 36(3): 971-996. |
21 | 赵欢, 高正红, 夏露. 高速自然层流翼型高效气动稳健优化设计方法[J]. 航空学报, 2022, 43(1): 124894. |
ZHAO H, GAO Z H, XIA L. Efficient robust aerodynamic design optimization method for high-speed NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124894 (in Chinese). | |
22 | ZHAO H, GUO Z H, XU F, et al. An efficient adaptive forward-backward selection method for sparse polynomial chaos expansion[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 355: 456-491. |
23 | PALAR P S, SHIMOYAMA K. On efficient global optimization via universal Kriging surrogate models[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2377-2397. |
24 | ZHAO H, GAO Z H, XU F, et al. Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data[J]. Structural and Multidisciplinary Optimization, 2021, 64(2): 829-858. |
25 | SCHOBI R, SUDRET B, WIART J. Polynomial-chaos-based kriging[J]. International Journal for Uncertainty Quantification, 2015, 5(2): 171-193. |
26 | TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323. |
27 | WEINBERGER K Q, SAUL L K. Unsupervised learning of image manifolds by semidefinite programming[J]. International Journal of Computer Vision, 2006, 70(1): 77-90. |
28 | SAXENA D K, DEB K. Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: Employing correntropy and a novel maximum variance unfolding[C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 772-787. |
29 | STURM J F. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones[J]. Optimization Methods and Software, 1999, 11: 625-653. |
30 | KEANE A J. Statistical improvement criteria for use in multiobjective design optimization[J]. AIAA Journal, 2006, 44(4): 879-891. |
31 | BAUTISTA D C T. A sequential design for approximating the pareto front using the expected pareto improvement function[M]. Columbus: The Ohio State University, 2009. |
32 | ZITZLER E. Evolutionary algorithms for multiobjective optimization: Methods and applications[M]. Ithaca: Shaker, 1999. |
33 | KNOWLES J. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50-66. |
34 | ZHAN D W, CHENG Y S, LIU J. Expected improvement matrix-based infill criteria for expensive multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(6): 956-975. |
35 | ZHAN D W, QIAN J C, LIU J, et al. Pseudo expected improvement matrix criteria for parallel expensive multi-objective optimization[C]∥ World Congress of Structural and Multidisciplinary. Cham: Springer, 2017: 175-190. |
36 | 赵欢,高正红,夏露 .基于新型高维代理模型的气动外形设计方法研究[J].航空学报, 2023, 44(1): 126924. |
ZHAO H, GAO Z H, XIA L, et al. Research on novel high-dimensional surrogate model-based aerodynamic shape design optimization method[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 126924 (in Chinese). | |
37 | ZHAO H, GUO Z H, XIA L. Efficient aerodynamic analysis and optimization under uncertainty using multi-fidelity polynomial chaos-Kriging surrogate model[J]. Computers & Fluids, 2022, 246: 105643 |
38 | 赵欢. 基于自适应多可信度多项式混沌-Kriging模型的高效气动优化方法[J]. 力学学报, 2023, 55(1): 1-16. |
ZHAO H. Adaptive multi-fidelity polynomial chaos-kriging model-based efficient aerodynamic design optimization method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 1-16 (in Chinese). |
[1] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[2] | Huan ZHAO, Zhenghong GAO, Lu XIA. Aerodynamic shape design optimization method based on novel high⁃dimensional surrogate model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126924-126924. |
[3] | YANG Hui, SONG Wenping, HAN Zhonghua, XU Jianhua. Multi-objective and Multi-constrained Optimization Design for a Helicopter Rotor Airfoil [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(7): 1218-1226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341