[1] OPARA K R, ARABAS J. Differential evolution:A survey of theoretical analyses[J]. Swarm and Evolutionary Computation, 2019, 44:546-558. [2] SHETH P D, UMBARKAR A J. Constrained optimization problems solving using evolutionary algorithms:A review[C]//2015 International Conference on Computational Intelligence and Communication Networks (CICN). Piscataway:IEEE Press, 2015. [3] WANG Y, CAI Z. Constrained evolutionary optimization by means of (μ+λ)-differential evolution and improved adaptive trade-off model[J]. Evolutionary Computation, 2011, 19(2):249-285. [4] DAS S, MULLICK S S, SUGANTHAN P N. Recent advances in differential evolution-an updated survey[J]. Swarm Evolutionary Computation, 2016, 27:1-30. [5] GAO W F, YEN G G, LIU S Y. A dual-population differential evolution with coevolution for constrained optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(5):1108-1121. [6] SHI R H, LIU L, LONG T, et al. Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite[J]. Acta Astronautica, 2017, 138:301-317. [7] 龙腾, 刘建, WANG G G, 等. 基于计算试验设计与代理模型的飞行器近似优化策略探讨[J]. 机械工程学报, 2016, 52(14):79-105. LONG T, LIU J, WANG G G, et al. Discuss on approximate optimization strategies using design of computer experiments and metamodels for flight vehicle design[J]. Journal of Mechanical Engineering, 2016, 52(14):79-105(in Chinese). [8] JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural Multidisciplinary Optimization, 2001, 23(1):1-13. [9] GUNST R F. Response surface methodology:Process and product optimization using designed experiments[J]. Technometrics, 1996, 38(3):284-286. [10] BHOSEKAR A, IERAPETRITOU M G J C, ENGINEERING C. Advances in surrogate based modeling, feasibility analysis, and optimization:A review[J]. Computers & Chemical Engineering, 2018, 108:250-267. [11] 姚裕盛, 徐开俊. 基于BP神经网络的飞行训练品质评估[J]. 航空学报, 2017, 38(S1):721513. YAO Y S, XU K J. Quality assessment of flight training based on BP neural network[J]. Acta Aeronautic et Astronautica Sinica, 2017, 38(S1):721513(in Chinese). [12] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese). [13] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5):623344. HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623344(in Chinese). [14] HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal, 2017, 55(12):4330-4346. [15] BERTRAM A, ZIMMERMANN R. Theoretical investigations of the new Cokriging method for variable-fidelity surrogate modeling[J]. Advances in Computational Mathematics, 2018, 44(6):1693-1716. [16] HAN Z H, GÖRTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1885-1896. [17] ZHAN D W, XING H L. Expected improvement for expensive optimization:A review[J/OL]. Journal of Global Optimization,(2020-07-10)[2020-08-23]. https://doi.org/10.1007/s10898-020-00923-x. [18] JONES D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4):345-383. [19] JIN Y C. Surrogate-assisted evolutionary computation:Recent advances and future challenges[J]. Swarm and Evolutionary Computation, 2011, 1(2):61-70. [20] JIN Y C, WANG H D, CHUGH T, et al. Data-driven evolutionary optimization:An overview and case studies[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(3):442-458. [21] 陶良波. 基于动态代理模型的粒子群优化算法研究[D]. 武汉:华中科技大学, 2017. TAO L B. Research on dynamic surrogate models assisted particle swarm optimization[D]. Wuhan:Huazhong University of Science and Technology, 2017(in Chinese). [22] LIU B, ZHANG Q F, GIELEN G G E. A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(2):180-192. [23] YU H B, TAN Y, ZENG J C, et al. Surrogate-assisted hierarchical particle swarm optimization[J]. Information Sciences, 2018, 454-455:59-72. [24] 田杰, 谭瑛, 孙超利, 等. 代理模型辅助进化算法在高维优化问题中的应用[J]. 机械设计与制造, 2018, 12:269-272. TIAN J, TAN Y, SUN C L, et al. Surrogate-assisted evolutionary optimization for high-dimensional expensive optimization[J]. Machinery Design & Manufacture, 2018, 12:269-272(in Chinese). [25] WANG X J, WANG G G, SONG B W, et al. A novel evolutionary sampling assisted optimization method for high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5):815-827. [26] WANG Y, YIN D Q, YANG S X, et al. Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints[J]. IEEE Transactions on Cybernetics, 2019, 49(5):1642-1656. [27] WILD S M, SHOEMAKER C. Global convergence of radial basis function trust-region algorithms for derivative-free optimization[J]. SIAM Review, 2013, 55(2-4):349-371. [28] DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2-4):311-338. [29] LIANG J, RUNARSSON T, MEZURA-MONTES E, et al. Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization[J]. Journal of Applied Mechanics, 2006, 41(8):8-31. [30] REGIS R G. Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3):326-347. [31] CAI X W, QIU H B, GAO L, et al. Metamodeling for high dimensional design problems by multi-fidelity simulations[J]. Structural and Multidisciplinary Optimization, 2017, 56(1):151-166. |