Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (9): 529069.doi: 10.7527/S1000-6893.2023.29069
• Articles • Previous Articles Next Articles
Zixu WANG1, Pan LI1(
), Ke LU1,2, Zhenhua ZHU1, Renliang CHEN1
Received:2023-05-30
Revised:2023-06-18
Accepted:2023-07-07
Online:2024-05-15
Published:2023-07-17
Contact:
Pan LI
E-mail:lipan@nuaa.edu.cn
Supported by:CLC Number:
Zixu WANG, Pan LI, Ke LU, Zhenhua ZHU, Renliang CHEN. Optimized design of trim strategy for coaxial rigid rotor high-speed helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529069.
Table 2
Total required power comparison before and after optimization design (cruising speed)
| 变量 | 基本配平策略 (方案1) | 优化配平策略 (方案2) |
|---|---|---|
| 俯仰角/(°) | 0 | 3.43 |
| 平尾安装角/(°) | 0 | -4.21 |
| 无量纲旋翼转速 | 0.90 | 0.83 |
| 横向周期变距差动/(°) | 0 | 2.32 |
| 升力偏置 | 0.31 | 0.29 |
| 操纵极性反向 | 否 | 否 |
| 纵向短周期模态阻尼比 | 0.54(等级1) | 0.57(等级1) |
| 荷兰滚模态阻尼比 | 0.28(等级1) | 0.28(等级1) |
| 纵向操纵功效/(rad∙s-2∙cm) | 0.45(等级1) | 0.52(等级1) |
| 横向操纵功效/(rad∙s-2∙cm) | 1.52(等级1) | 1.44(等级1) |
| 桨毂合力矩/(N∙m) | 95 567.99 | 65 123.72 |
| 总需用功率/kW | 2 788.26 | 2 628.72 |
Table 3
Total required power comparison before and after optimization design (maximum flight speed)
| 变量 | 基本配平策略 (方案1) | 优化配平策略 (方案3) |
|---|---|---|
| 俯仰角/(°) | 0 | 3.17 |
| 平尾安装角/(°) | 0 | -5.84 |
| 无量纲旋翼转速 | 0.90 | 0.82 |
| 横向周期变距差动/(°) | 0 | 2.00 |
| 升力偏置 | 0.32 | 0.29 |
| 操纵极性反向 | 否 | 否 |
| 纵向短周期模态阻尼比 | 0.50(等级1) | 0.42(等级1) |
| 荷兰滚模态阻尼比 | 0.28(等级1) | 0.27(等级1) |
| 纵向操纵功效/(rad∙s-2∙cm) | 0.48(等级1) | 0.41(等级1) |
| 横向操纵功效/(rad∙s-2∙cm) | 1.61(等级1) | 1.50(等级1) |
| 桨毂合力矩/(N∙m) | 100 549.09 | 63 436.41 |
| 总需用功率/kW | 4 101.90 | 3 819.90 |
Table 4
Comparison of rotor hub moments before and after optimized design (cruising speed)
| 变量 | 基本配平策略 (方案1) | 优化配平策略 (方案4) |
|---|---|---|
| 俯仰角/(°) | 0 | 4.14 |
| 平尾安装角/(°) | 0 | -5.18 |
| 无量纲旋翼转速 | 0.90 | 1.00 |
| 横向周期变距差动/(°) | 0 | 3.06 |
| 升力偏置 | 0.31 | 0.14 |
| 操纵极性反向 | 否 | 否 |
| 纵向短周期模态阻尼比 | 0.54(等级1) | 0.60(等级1) |
| 荷兰滚模态阻尼比 | 0.28(等级1) | 0.26(等级1) |
| 纵向操纵功效/(rad∙s-2∙cm) | 0.45(等级1) | 0.54(等级1) |
| 横向操纵功效/(rad∙s-2∙cm) | 1.52(等级1) | 1.63(等级1) |
| J2/(N∙m) | 95 567.99 | 42 419.24 |
| 总需用功率/kW | 2 788.26 | 2 865.27 |
Table 5
Comparison of rotor hub moments before and after optimized design (maximum flight speed)
| 变量 | 基本配平策略 (方案1) | 优化配平策略 (方案5) |
|---|---|---|
| 俯仰角/(°) | 0 | 4.42 |
| 平尾安装角/(°) | 0 | -5.74 |
| 无量纲旋翼转速 | 0.90 | 1.00 |
| 横向周期变距差动/(°) | 0 | 2.32 |
| 升力偏置 | 0.32 | 0.15 |
| 操纵极性反向 | 否 | 否 |
| 纵向短周期模态阻尼比 | 0.50(等级1) | 0.59(等级1) |
| 荷兰滚模态阻尼比 | 0.28(等级1) | 0.26(等级1) |
| 纵向操纵功效/(rad∙s-2∙cm) | 0.48(等级1) | 0.60(等级1) |
| 横向操纵功效/(rad∙s-2∙cm) | 1.61(等级1) | 1.75(等级1) |
| J2/(N∙m) | 100 549.09 | 45 017.28 |
| 总需用功率/kW | 4 101.90 | 4 266.07 |
| 1 | 吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报, 2015, 47(2): 173-179. |
| WU X M. Current status, development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 173-179 (in Chinese). | |
| 2 | 李春华, 樊枫, 徐明. 共轴刚性旋翼构型高速直升机发展研究[J]. 航空科学技术, 2021, 32(1): 47-52. |
| LI C H, FAN F, XU M. The development overview of coaxial rigid rotor helicopter[J]. Aeronautical Science & Technology, 2021, 32(1): 47-52 (in Chinese). | |
| 3 | 邓景辉. 高速直升机前行桨叶概念旋翼技术[J]. 航空科学技术, 2012(3): 9-14. |
| DENG J H. The ABC rotor technology for high speed helicopter[J]. Aeronautical Science & Technology, 2012(3): 9-14 (in Chinese). | |
| 4 | RUDDELL A J, MACRINO J A. Advancing blade concept (ABC) high speed development[C]∥The 36th Annua1 Forum of the American Helicopter Society. Washington, D. C.: American Helicopter Society, 1980: 1-13. |
| 5 | CHENEY M C. The ABC helicopter[J]. Journal of the American Helicopter Society, 1969, 14(4): 10-19. |
| 6 | COOPER D E, KLINGLOFF R F. Control for helicopter having dual rigid rotors: US4008979A[P]. 1975-11-13. |
| 7 | BAGAI A. Aerodynamic design of the X2 technology demonstrator main rotor blade[C]∥The 64th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society, 2008: 1-16. |
| 8 | ELLER E, GREENFIELD A L, WULFF O, et al. Elevator load alleviating control for a rotary wing aircraft: US20170029093A1[P]. 2017-02-02. |
| 9 | EREZ E. X2TM load alleviating contRols[C]∥The 68th Annual Forum of Texas. Washington, D. C.: American Helicopter Society, 2012: 1578-1588. |
| 10 | FERGUSON K M, THOMSON D. Flight dynamics investigation of compound helicopter configurations[J]. Journal of Aircraft, 2015, 52(1): 156-167. |
| 11 | FERGUSON K M. Towards a better understanding of the flight mechanics of compound helicopter configurations[D]. Glasgow: University of Glasgow, 2015. |
| 12 | 袁野. 共轴刚性双旋翼复合式高速直升机飞行动力学研究[D]. 南京: 南京航空航天大学, 2019: 80-92. |
| YUAN Y. Flight dynamics research for coaxial rigid rotor compound high-speed[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 80-92. (in Chinese). | |
| 13 | YUAN Y, THOMSON D, CHEN R L. Investigation of lift offset on flight dynamics characteristics for coaxial compound helicopters[J]. Journal of Aircraft, 2019: 56(6): 2210-2222. |
| 14 | 佘明人. 共轴刚性旋翼高速直升机飞行动力学建模及飞行特性研究[D]. 南京: 南京航空航天大学, 2021: 36-66. |
| SHE M R. Research on flight dynamics modeling and flight characteristics of coaxial rigid rotor high-speed helicopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 36-66 (in Chinese). | |
| 15 | 陈仁良, 李攀, 吴伟, 等. 直升机飞行动力学数学建模问题[J]. 航空学报, 2017, 38(7): 520915-520915. |
| CHEN R L, LI P, WU W, et al. A review of mathematical modeling of helicopter flight dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 520915-520915 (in Chinese). | |
| 16 | 李攀. 旋翼非定常自由尾迹及高置信度直升机飞行力学建模研究[D]. 南京: 南京航空航天大学, 2010: 57. |
| LI P. Rotor Unsteady Free-Vortex Wake Model and Investigation on High-Fidelity Modeling of Helicopter Flight Dynamics [D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 57 (in Chinese). | |
| 17 | KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the South African Institute of Mining and Metallurgy, 1951, 52(6): 201-203. |
| 18 | SCHMIT L A, FARSHI B. Some approximation concepts for structural synthesis[J]. AIAA Journal, 1974, 12(5): 692-699. |
| 19 | MULLUR A A, MESSAC A. Extended radial basis functions: More flexible and effective metamodeling[J]. AIAA Journal, 2005, 43(6): 1306-1315. |
| 20 | ELANAYAR S V T, SHIN Y C. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems[J]. IEEE Transactions on Neural Networks, 1994, 5(4): 594-603. |
| 21 | 宋超, 杨旭东, 宋文萍. 耦合梯度与分级Kriging模型的高效气动优化方法[J]. 航空学报, 2016, 37(7): 2144-2155. |
| SONG C, YANG X D, SONG W P. Efficient aerodynamic optimization method using hierarchical Kriging model combined with gradient[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2144-2155 (in Chinese). | |
| 22 | 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11): 2910-2920. |
| XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2910-2920 (in Chinese). | |
| 23 | 刘克龙, 姚卫星, 穆雪峰. 基于Kriging代理模型的结构形状优化方法研究[J]. 计算力学学报, 2006, 23(3): 344-347,362. |
| LIU K L, YAO W X, MU X F. A method of structural shape optimization based on Kriging model[J]. Chinese Journal of Computational Mechanics, 2006, 23(3): 344-347,362 (in Chinese). | |
| 24 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
| HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese). | |
| 25 | PITT D M, PETER D A. Theoretical prediction of dynamic inflow derivatives[J]. Vertica, 1981, 5(1): 21-34. |
| 26 | 袁野, 陈仁良, 李攀. 基于涡环尾迹模型的共轴刚性旋翼直升机飞行动力学建模[J]. 航空学报, 2018, 39(3): 121564. |
| YUAN Y, CHEN R L, LI P. Flight dynamic modelling for coaxial rigid rotor helicopter using vortex-ring wake model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 121564 (in Chinese). | |
| 27 | 赵珅宁, 李攀, 张亚飞, 等. 一种新的旋翼动态尾迹模型研究[J]. 南京航空航天大学学报, 2016, 48(2): 212-217. |
| ZHAO S N, LI P, ZHANG Y F, et al. Study on new rotor dynamic wake model[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2): 212-217 (in Chinese). | |
| 28 | RUDDELL A. Advancing blade concept (ABC) technology demonstrator: TR-81-D-5[R]. Stratford: AVRADCOM, 1981. |
| 29 | PHELPS A, MINECK R. Aerodynamic characteristics of a counter-rotating, coaxial, hingeless rotor helicopter model with auxiliary propulsion: TM-78705[R]. Washington, D. C.: NASA, 1978. |
| 30 | FELKER F F. Performance and loads data from a wind tunnel test of a full-scale, coaxial, hingeless rotor helicopter: TM-81329[R]. Washington, D. C.: NASA, 1981. |
| 31 | JOHNSON W. Influence of lift offset on rotorcraft performance: TP-2009-215404[R]. Washington, D. C.: NASA, 2013. |
| 32 | SALMIRS S, TAPSCOTT R J. The effects of various combinations of damping and control power on handling qualities during both instrument and visual flight: TN-D-58[R]. Washington, D. C.: NASA, 1959. |
| 33 | ANON. Military specification flying qualities of piloted V/STOL aircraft: [S]. Washington, D. C.: Military and Government Specs & Standards, 1970: 80-92. |
| 34 | JONES D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4): 345-383. |
| 35 | JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. |
| 36 | 中央军委装备发展部. 军用直升机飞行品质: [S]. 北京: 中国标准出版社, 2017: 23-56. |
| MILITARY COMMISSION E PMENT DEPARTMENT. Flying qualities specification of military helicopter: [S]. Beijing: Standards Press of China, 2017: 23-56 (in Chinese). | |
| 37 | DAS I, DENNIS J E. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. SIAM Journal on Optimization, 1998, 8(3): 631-657. |
| [1] | Wanying YUN, Fengyuan LI, Bo HUANG, Siyu WANG, Yunfei JIAO, Xinyu BAI, Xueqi HUANG. Enhanced metamodel-based importance sampling method for reliability analysis [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 230738-230738. |
| [2] | PENG Zhenrui, CAO Mingming, LIU Mandong. Model updating method based on wavelet decomposition of acceleration frequency response function [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 223548-223548. |
| [3] | WANG Chao, GAO Zhenghong, ZHANG Wei, XIA Lu, HUANG Jiangtao. Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(7): 121745-121745. |
| [4] | YUAN Ye, CHEN Renliang, LI Pan. Flight dynamic modelling for coaxial rigid rotor helicopter using vortex-ring wake model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(3): 121564-121564. |
| [5] | SONG Chao, YANG Xudong, SONG Wenping. Efficient aerodynamic optimization method using hierarchical Kriging model combined with gradient [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(7): 2144-2155. |
| [6] | ZHAO Hailong, YUE Zhufeng, LIU Wei. A Kriging surrogate model method for moment-independent importance analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(7): 2234-2241. |
| [7] | LIU Zhiyong, MIAO Lei, TAO Yang, ZHANG Yi, WANG Shumin. A static calibration method of wind tunnel strain-gage balance based on Kriging model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(12): 3685-3691. |
| [8] | TONG Cao, SUN Zhili, YANG Li, SUN Anbang. An active learning reliability method based on Kriging and Monte Carlo [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(9): 2992-3001. |
| [9] | LIU Zhan, ZHANG Jianguo, WANG Cancan, TAN Chunlin, SUN Jing. Hybrid Structure Reliability Method Combining Optimized Kriging Model and Importance Sampling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(6): 1347-1355. |
| [10] | YANG Hui, SONG Wenping, HAN Zhonghua, XU Jianhua. Multi-objective and Multi-constrained Optimization Design for a Helicopter Rotor Airfoil [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(7): 1218-1226. |
| [11] | ZHENG Jianqiang, XIANG Jinwu, LUO Zhangping, REN Yiru. Crashworthiness Optimization of Civil Aircraft Subfloor Structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, (4): 640-649. |
| [12] | Liang Yu;Cheng Xiaoquan;Li Zhengneng;Xiang Jinwu. Multi-object Aerodynamic Configuration Parameter Design Using Kriging Approximation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(6): 1141-1148. |
| [13] | ZHANG Ke-shi;HAN Zhong-hua;LI Wei-ji;LI Xiang. Multidisciplinary Aerodynamic/Structural Design Optimization for High Subsonic Transport Wing Using Approximation Technique [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(5): 810-815. |
| [14] | GENG Yong-bing;LIU Hong;YAO Wen-xiu;WANG Fa-min. Viscous Optimized Design of Waverider Derived from Cone Flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(1): 23-28. |
| [15] | WANG Xiao-feng;XI Guang. Aerodynamic Optimization Design for Airfoil Based on Kriging Model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(5): 545-549. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

