Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (20): 229989.doi: 10.7527/S1000-6893.2024.29989
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles
Feng JIANG1, Huacong LI1, Jiangfeng FU1(), Xianwei LIU2
Received:
2023-12-15
Revised:
2024-01-02
Accepted:
2024-01-25
Online:
2024-02-05
Published:
2024-02-02
Contact:
Jiangfeng FU
E-mail:fjf@nwpu.edu.cn
Supported by:
CLC Number:
Feng JIANG, Huacong LI, Jiangfeng FU, Xianwei LIU. Non-probabilistic reliability analysis with fuzzy failure and safe states[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 229989.
1 | WEI Z Z, JIN H, PEI X J, et al. A simplified approach to estimate the fatigue life of full-scale welded cast steel thin-walled tubular structures[J]. Thin-Walled Structures, 2021, 160: 107348. |
2 | SONG K L, ZHANG Y G, YU X S, et al. A new sequential surrogate method for reliability analysis and its applications in engineering[J]. IEEE Access, 2019, 7: 60555-60571. |
3 | DANG C, VALDEBENITO M A, SONG J W, et al. Estimation of small failure probabilities by partially Bayesian active learning line sampling: Theory and algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 412: 116068. |
4 | KIM M, JUNG Y, LEE M Y, et al. An expected uncertainty reduction of reliability: Adaptive sampling convergence criterion for Kriging-based reliability analysis[J]. Structural and Multidisciplinary Optimization, 2022, 65(7): 206. |
5 | ZHONG C T, WANG M F, DANG C, et al. First-order reliability method based on Harris Hawks Optimization for high-dimensional reliability analysis[J]. Structural and Multidisciplinary Optimization, 2020, 62(4): 1951-1968. |
6 | WANG C, MATTHIES H G. Epistemic uncertainty-based reliability analysis for engineering system with hybrid evidence and fuzzy variables[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 355: 438-455. |
7 | 檀中强, 潘骏, 胡明, 等. 基于椭球模型的机构非精确概率可靠性分析方法[J]. 机械工程学报, 2019, 55(2): 168-176. |
TAN Z Q, PAN J, HU M, et al. Imprecise probabilistic reliability analysis method for MechanismBased on ellipsoid model[J]. Journal of Mechanical Engineering, 2019, 55(2): 168-176 (in Chinese). | |
8 | BEN-HAIM Y. A non-probabilistic concept of reliability[J]. Structural Safety, 1994, 14(4): 227-245. |
9 | ELISHAKOFF Y B H A I. Convex models of uncertainty in applied mechanics[M]. Amsterdam: Elsevier, 1990. |
10 | JIANG C, HAN X, LU G Y, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(33-36): 2528-2546. |
11 | 曹鸿钧, 段宝岩. 基于凸集合模型的非概率可靠性研究[J]. 计算力学学报, 2005, 22(5): 546-549, 578. |
CAO H J, DUAN B Y. An approach on the non-probabilistic reliability of structures based on uncertainty convex models[J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 546-549, 578 (in Chinese). | |
12 | NI B Y, ELISHAKOFF I, JIANG C, et al. Generalization of the super ellipsoid concept and its application in mechanics[J]. Applied Mathematical Modelling, 2016, 40(21-22): 9427-9444. |
13 | HONG L X, LI H C, GAO N, et al. Random and multi-super-ellipsoidal variables hybrid reliability analysis based on a novel active learning Kriging model[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113555. |
14 | HONG L X, LI H C, FU J F, et al. Hybrid active learning method for non-probabilistic reliability analysis with multi-super-ellipsoidal model[J]. Reliability Engineering & System Safety, 2022, 222: 108414. |
15 | 郭书祥,吕震宙. 结构体系的非概率可靠性分析方法[J]. 计算力学学报, 2002, 19 (3): 332-335. |
GUO S, LU Z Z. A procedure of the analysis of non-probabilistic reliability of structural systems[J]. Chinese Journal of Computational Mechanics, 2002, 19(3): 332-335 (in Chinese). | |
16 | MENG Z, HU H, ZHOU H L. Super parametric convex model and its application for non-probabilistic reliability-based design optimization[J]. Applied Mathematical Modelling, 2018, 55: 354-370. |
17 | WANG X J, WANG L, ELISHAKOFF I, et al. Probability and convexity concepts are not antagonistic[J]. Acta Mechanica, 2011, 219(1): 45-64. |
18 | JIANG C, LU G Y, HAN X, et al. Some important issues on first-order reliability analysis with nonprobabilistic convex models[J]. Journal of Mechanical Design, 2014, 136(3): 034501. |
19 | 路国营. 基于非概率凸模型的可靠性分析及应用[D]. 长沙: 湖南大学, 2012. |
LU G Y. The reliability analysis and it’s application based on the non-probabilistic convex model[D].Changsha: Hunan University, 2012 (in Chinese). | |
20 | 毕仁贵. 考虑相关性的不确定凸集模型与非概率可靠性分析方法[D]. 长沙: 湖南大学, 2015. |
BI R G. Non-probabilistic uncertainty convex model and reliability analysis method incorporating correlation[D].Changsha: Hunan University, 2015 (in Chinese). | |
21 | MENG Z, WAN H P, SHENG Z L, et al. A novel study of structural reliability analysis and optimization for super parametric convex model[J]. International Journal for Numerical Methods in Engineering, 2020, 121(18): 4208-4229. |
22 | 黄晓宇, 王攀, 李海和, 等. 具有模糊失效状态的涡轮盘疲劳可靠性及灵敏度分析[J]. 西北工业大学学报, 2021, 39(6): 1312-1319. |
HUANG X Y, WANG P, LI H H, et al. Fatigue reliability and sensitivity analysis of turbine disk with fuzzy failure status[J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1312-1319 (in Chinese). | |
23 | 张萌. 统一模糊可靠性模型理论研究及叶片抗振模糊可靠性评估建模[D]. 西安: 西北工业大学, 2015. |
ZHANG M. Theoretical study on the unified fuzzy reliability model and reliability assessment modeling of blades to avoid resonance[D]. Xi’an: Northwestern Polytechnical University, 2015 (in Chinese). | |
24 | FENG K X, LU Z Z, YUN W Y. Aircraft icing severity analysis considering three uncertainty types[J]. AIAA Journal, 2019, 57(4): 1514-1522. |
25 | FENG K X, LU Z Z, PANG C, et al. Efficient numerical algorithm of profust reliability analysis: An application to wing box structure[J]. Aerospace Science and Technology, 2018, 80: 203-211. |
26 | PANDEY D, TYAGI S K. Profust reliability of a gracefully degradable system[J]. Fuzzy Sets and Systems, 2007, 158(7): 794-803. |
27 | CAI K Y. System failure engineering and fuzzy methodolog: An introductory overview[J]. Fuzzy Sets and Systems, 1996, 83(2): 113-133. |
28 | CAI K Y, WEN C Y, ZHANG M L. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context[J]. Fuzzy Sets and Systems, 1991, 42(2): 145-172. |
29 | CAI K Y, WEN C Y, ZHANG M L. Fuzzy reliability modeling of gracefully degradable computing systems[J]. Reliability Engineering & System Safety, 1991, 33(1): 141-157. |
30 | WANG J Q, LU Z Z, SHI Y. Aircraft icing safety analysis method in presence of fuzzy inputs and fuzzy state[J]. Aerospace Science and Technology, 2018, 82-83: 172-184. |
31 | LING C Y, LU Z Z, SUN B, et al. An efficient method combining active learning Kriging and Monte Carlo simulation for profust failure probability[J]. Fuzzy Sets and Systems, 2020, 387: 89-107. |
32 | YUN W Y, LU Z Z, FENG K X, et al. A novel step-wise AK-MCS method for efficient estimation of fuzzy failure probability under probability inputs and fuzzy state assumption[J]. Engineering Structures, 2019, 183: 340-350. |
33 | KEYNES J M. A Treatise on probability[M]. London: Macmillan & Co., Ltd., 1921. |
34 | ZADEH L A. Probability measures of fuzzy events[J]. Journal of Mathematical Analysis and Applications, 1968, 23(2): 421-427. |
35 | FORRESTER A I J, SÓBESTER A, KEANE A J. Engineering design via surrogate modelling: A practical guide[M]. Chichester: Wiley, 2008. |
36 | DANG C, WEI P F, FAES M G R, et al. Interval uncertainty propagation by a parallel Bayesian global optimization method[J]. Applied Mathematical Modelling, 2022, 108: 220-235. |
37 | ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[J]. Structural Safety, 2011, 33(2): 145-154. |
38 | ZHANG Y S, LIU Y S, YANG X F, et al. An efficient Kriging method for global sensitivity of structural reliability analysis with non-probabilistic convex model[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2015, 229(5): 442-455. |
39 | JIANG C, BI R G, LU G Y, et al. Structural reliability analysis using non-probabilistic convex model[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 83-98. |
40 | SONG J W, WEI P F, VALDEBENITO M A, et al. Data-driven and active learning of variance-based sensitivity indices with Bayesian probabilistic integration[J]. Mechanical Systems and Signal Processing, 2022, 163: 108106. |
[1] | Feng JIANG, Huacong LI, Jiangfeng FU, Linxiong HONG. A RBF and active learning combined method for structural non-probabilistic reliability analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 226667-226667. |
[2] | GONG Xiangrui, LYU Zhenzhou, ZUO Jianwei. Two improved methods for variance-based global sensitivity analysis' W-indices [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(6): 1888-1898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341