[1] |
刘付超,魏鹏飞,周长聪,等. 含旋转铰间隙平面运动机构可靠性灵敏度分析[J]. 航空学报,2018,39(11):422133. LIU F C,WEI P F, ZHOU C C, et al. Time-independent reliability and sensitivity analysis for planar motion mechanisms with revolution joint clearances[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):422133(in Chinese).
|
[2] |
冯凯旋, 吕震宙, 蒋献. 基于偏导数的全局灵敏度指标的高效求解方法[J]. 航空学报, 2018, 39(3):221699. FENG K X, LYU Z Z, JIANG X. Efficient algorithm for estimating derivative-based global sensitivity index[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):221699(in Chinese).
|
[3] |
CUI L J, LV Z Z, ZHAO X P. Moment-independent importance measure of basic random variable and its probability density evolution solution[J]. Science China Technological Science, 2010, 53(4):1138-1145.
|
[4] |
KARAMCHANDANI A, COMELL C A. Sensitivity estimation within first and second-order reliability methods[J]. Structural Safety, 1992, 11:95-107.
|
[5] |
MELCHERS R E, AHAMMED M. A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability[J]. Computers and Structures, 2004, 82:55-61.
|
[6] |
DUBOURG V, SUDRET B, DEHEEGER F. Metamodel-based importance sampling for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2013, 33:47-57.
|
[7] |
CADINI F, GIOLETTAL A, ZIO E. An improvement of a meta model-based importance sampling algorithm for estimating small failure probabilities[C]//International Conference on Vulnerability and Risk Analysis and Management, 2014:2104-2114.
|
[8] |
WANG Y P, XIAO S N, LV Z Z. An efficient global reliability sensitivity analysis algorithm based on classification of model output and subset simulation[J]. Structural Safety, 2018, 74:49-57.
|
[9] |
WANG Y P, XIAO S N, LV Z Z. A new efficient simulation method based on Bayes' theorem and importance sampling Markov chain simulation to estimate the failure-probability-based global sensitivity measure[J]. Aerospace Science and Technology, 2018, 79:364-372
|
[10] |
MELCHERS R E. Importance sampling in structural system[J]. Structural Safety, 1989, 6:3-10.
|
[11] |
HARBITZ A. An efficient sampling method for probability of failure calculation[J]. Structural Safety, 1986, 3:109-115.
|
[12] |
YUN W Y, LV Z Z, JIANG X. An efficient global reliability sensitivity analysis algorithm based on classification of model output and subset simulation[J]. Structural Safety, 2018, 74:49-57.
|
[13] |
AU S K, BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4):263-277.
|
[14] |
PAPAIOANNOU I, BETZ W, ZWIRGLMAIER K, et al. MCMC algorithms for subset simulation[J]. Probabilistic Engineering Mechanics, 2015, 41:89-103.
|
[15] |
ZUEY K M. Subset simulation method for rare event estimation:An introduction[J]. Encyclopedia of Earthquake Engieering, 2014:3671-3691.
|
[16] |
SONG S F, LV Z Z, QIAO H W. Subset simulation for structural reliability sensitivity analysis[J]. Reliability Engineering System Safety, 2009, 94(2):658-665.
|
[17] |
AU S K. Probabilistic failure analysis by importance sampling Markov chain simulation[J]. Journal of Engineering Mechanics, 2004, 130:303-311.
|
[18] |
韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报,2016,37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
|
[19] |
ECHARD B, GAYTON N, LEMAIRE M. An active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety, 2011, 33:145-154.
|
[20] |
ECHARD B, GAYTON N, LEMAIRE M, et al. A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[J]. Reliability Engineering and System Safety, 2013, 111:232-240.
|
[21] |
LI L Y, LV Z Z, FENG J, et al. Moment-independent importance measure of basic variable and its state dependent parameter solution[J]. Structural Safety, 2012, 38:40-47.
|
[22] |
WEI P F, LV Z Z, HAO W R. Efficient sampling methods for global reliability sensitivity analysis[J]. Computer Physics Communications, 2012, 183:1728-1743.
|
[23] |
LING C Y, LV Z Z, FENG K X, et al. Efficient numerical simulation methods for estimating fuzzy failure probability based importance measure indices[J]. Structural and Multidisciplinary Optimization, 2019, 59:577-593
|
[24] |
XIAO S N, LV Z Z. Structural reliability sensitivity analysis based on classification of model output[J]. Aerospace Science and Technology, 2017, 71:52-61.
|