Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (23): 628462-628462.doi: 10.7527/S1000-6893.2023.28462
• Special Topic: Reusable Launch Vehicle Technology • Previous Articles Next Articles
Linkun HE1, Wenchao XUE2,3(), Ran ZHANG1, Huifeng LI1
Received:
2023-01-03
Revised:
2023-01-28
Accepted:
2023-05-25
Online:
2023-12-15
Published:
2023-06-02
Contact:
Wenchao XUE
E-mail:wenchaoxue@amss.ac.cn
Supported by:
CLC Number:
Linkun HE, Wenchao XUE, Ran ZHANG, Huifeng LI. Guidance and control for powered descent and landing of launch vehicles: Overview and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628462-628462.
Table 2
Guidance and control methods for powered descent and landing
制导控制方法 | 运动方程特性 | 约束特性 | 性能指标 | 优缺点 | 应用场景 | |
---|---|---|---|---|---|---|
方法 解析制导 | 多项式制导 | 常值重力; 无气动力;质量恒定 | 终端位置、速度、 姿态约束 | 无性能指标 | 模型简单 模型简化严重 | 气动力作用不明显的行星动力着陆 |
重力转弯制导 | 假设动力着陆段轨迹位于纵向平面 | 纵向平面内的终端速度和姿态约束 | 易于控制系统实现 难以处理大范围 横纵向终端位置误差 | |||
近似最优解析制导 | 可使用一般形式 重力场模型 | 终端位置、 速度约束 | 加速度二次型积分 | 采用误差反馈形式,鲁棒性好;难以处理终端姿态约束 | ||
轨迹优化制导方法 | 间接法 | 考虑质量变化; 一般不考虑气动力 | 推力大小过程约束 | 燃料消耗 指标 | 最优性好 难以在线应用 | 一般 动力着陆 |
凸优化 | 考虑质量变化; 考虑气动力作用; 飞行时间不确定 | 一般线性、 非线性约束 | 一般线性、非线性指标 | 可处理一般约束及 指标;收敛性缺少严格理论证明 | ||
基于机器学习的制导方法 | 考虑初始状态及 模型参数散布 | 一般线性、 非线性约束 | 一般线性、非线性指标 | 适应性好;样本量大、奖励函数设计难、可解释性差、控制量安全性难以保证 | 一般 动力着陆 | |
方法 姿态控制 | 比例-微分-积分控制 | 仅考虑绕质心运动 | 可用摆角约束 | 无性能指标 | 模型简单;结构固定,难以精细化设计 | 一般 动力着陆 |
相平面控制 | 模型简单;仅能进行 开关控制 | 以RCS进行姿态控制 | ||||
滑模控制 | 鲁棒性好;可能出现 控制量震颤、需要获得高阶微分信号 | 一般 动力着陆 | ||||
自适应控制 | 能够显式估计干扰 | |||||
制导控制协作方法 | 非线性控制 | 联立质心运动及 绕质心运动方程 | 可用摆角约束 | 无性能指标 | 反馈形式,计算量小 仅能实现对标称 轨迹的跟踪 | 一般 动力着陆 |
六自由度轨迹优化 | 姿态角速率、摆角变化率过程约束 | 燃料消耗 指标 | 可以考虑制导与姿控的相互影响;依赖精确的模型参数 |
1 | COPPER J. Single stage rocket concept selection and design: AIAA-1992-1383[R]. Reston: AIAA, 1992. |
2 | FREEMAN D C, TALAY T A, AUSTIN R E. Reusable launch vehicle technology program 1[J]. Acta Astronautica, 1997, 41(11): 777-790. |
3 | INATANI Y, NARUO Y, YONEMOTO K. Concept and preliminary flight testing of a fully reusable rocket vehicle[J]. Journal of Spacecraft and Rockets, 2001, 38(1): 36-42. |
4 | SCHARF D P, REGEHR M W, VAUGHAN G M, et al. ADAPT demonstrations of onboard large-divert Guidance with a VTVL rocket[C]∥ 2014 IEEE Aerospace Conference. Piscataway: IEEE Press, 2014: 1-18. |
5 | 宋征宇, 王聪. 运载火箭返回着陆在线轨迹规划技术发展[J]. 宇航总体技术, 2019, 3(6): 1-12. |
SONG Z Y, WANG C. Development of online trajectory planning technology for launch vehicle return and landing[J]. Astronautical Systems Engineering Technology, 2019, 3(6): 1-12 (in Chinese). | |
6 | MALYUTA D, YU Y, ELANGO P, et al. Advances in trajectory optimization for space vehicle control[J]. Annual Reviews in Control, 2021, 52: 282-315. |
7 | 宋征宇, 蔡巧言, 韩鹏鑫, 等. 重复使用运载器制导与控制技术综述[J]. 航空学报, 2021, 42(11): 525050. |
SONG Z Y, CAI Q Y, HAN P X, et al. Review of guidance and control technologies for reusable launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525050 (in Chinese). | |
8 | SONG Z Y, WANG C, THEIL S, et al. Survey of autonomous guidance methods for powered planetary landing[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5): 652-674. |
9 | 张亮, 李丹钰, 崔乃刚, 等 .垂直起降重复使用火箭全剖面飞行预设性能控制[J]. 航空学报, 2023, 44(3): 328103. |
ZHANG L, LI D Y, CUI N G, et al. Full flight profile prescribed performance control for vertical takeoff and vertical landing vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(3): 328103 (in Chinese). | |
10 | SIMPLÍCIO P, MARCOS A, BENNANI S. Reusable launchers: Development of a coupled flight mechanics, guidance, and control benchmark[J]. Journal of Spacecraft and Rockets, 2020, 57(1): 74-89. |
11 | SZMUK M, ACIKMESE B, BERNING A W. Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints: AIAA-2016-0378[R]. Reston: AIAA, 2016. |
12 | REYNOLDS T P, SZMUK M, MALYUTA D, et al. Dual quaternion-based powered descent guidance with state-triggered constraints[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(9): 1584-1599. |
13 | LIU X F. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(1): 65-77. |
14 | REYNOLDS T, SZMUK M, MALYUTA D, et al. A state-triggered line of sight constraint for 6-DoF powered descent guidance problems: AIAA-2019-0924[R]. Reston: AIAA, 2019. |
15 | SZMUK M, REYNOLDS T, ACIKMESE B, et al. Successive convexification for 6-DoF powered descent guidance with compound state-triggered constraints: AIAA-2019-0926[R]. Reston: AIAA, 2019. |
16 | ROSS I. How to find minimum-fuel controllers: AIAA-2004-5346[R]. Reston: AIAA, 2004. |
17 | BLACKMORE L, ACIKMESE B, SCHARF D P. Minimum-landing-error powered-descent guidance for Mars landing using convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1161-1171. |
18 | CHERRY G. A general, explicit, optimizing guidance law for rocket-propelled spaceflight: AIAA-1964-0638[R]. Reston: AIAA, 1964. |
19 | KLUMPP A. A manually retargeted automatic descent and landing system for lem:AIAA-1966-1863[R]. Reston: AIAA, 1966. |
20 | BENNETT F. Lunar descent and ascent trajectories:AIAA-1970-25[R]. Reston: AIAA, 1970. |
21 | KLUMPP A R. Apollo lunar descent guidance[J]. Automatica, 1974, 10(2): 133-146. |
22 | 韦常柱, 琚啸哲, 徐大富, 等. 垂直起降重复使用运载器返回制导与控制[J]. 航空学报, 2019, 40(7): 322782. |
WEI C Z, JU X Z, XU D F, et al. Guidance and control for return process of vertical takeoff vertical landing reusable launching vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 322782 (in Chinese). | |
23 | LU P. Augmented Apollo powered descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(3): 447-457. |
24 | LU P. Theory of fractional-polynomial powered descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(3): 398-409. |
25 | 张洪华, 关轶峰, 黄翔宇, 等. 嫦娥三号着陆器动力下降的制导导航与控制[J]. 中国科学: 技术科学, 2014, 44(4): 377-384. |
ZHANG H H, GUAN Y F, HUANG X Y, et al. Guidance navigation and control for Chang’E-3 powered descent[J]. Scientia Sinica (Technologica), 2014, 44(4): 377-384 (in Chinese). | |
26 | MCINNES C R. Path shaping guidance for terminal lunar descent[J]. Acta Astronautica, 1995, 36(7): 367-377. |
27 | MCINNES C R. Gravity turn descent with quadratic air drag[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(2): 393-394. |
28 | MCINNES C R. Gravity-turn descent from low circular orbit conditions[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 183-185. |
29 | 王大轶, 李铁寿, 马兴瑞. 月球探测器重力转弯软着陆的最优制导[J]. 自动化学报, 2002, 28(3): 385-390. |
WANG D Y, LI T S, MA X R. Optimal guidance for lunar gravity-turn descent[J]. Acta Automatica Sinica, 2002, 28(3): 385-390 (in Chinese). | |
30 | MCINNES C R. Direct adaptive control for gravity-turn descent[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(2): 373-375. |
31 | MCINNES C R. Nonlinear transformation methods for gravity-turn descent[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(1): 247-248. |
32 | 王大轶, 李铁寿, 严辉, 等. 月球引力转弯软着陆的制导控制研究[J]. 中国空间科学技术, 2000, 20(5): 17-23, 29. |
WANG D Y, LI T S, YAN H, et al. Guidance control for lunar gravity-turn descent[J]. Chinese Space Science and Technology, 2000, 20(5): 17-23, 29 (in Chinese). | |
33 | 朱建丰, 徐世杰. 月球重力转弯软着陆的模糊变结构控制[J]. 北京航空航天大学学报, 2007, 33(5): 539-543. |
ZHU J F, XU S J. Fuzzy variable structure control for lunar gravity-turn landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5): 539-543 (in Chinese). | |
34 | CITRON S J, DUNIN S E, MEISSINGER H F. A terminal guidance technique for lunar landing[J]. AIAA Journal, 1964, 2(3): 503-509. |
35 | CHOMEL C T, BISHOP R H. Analytical lunar descent guidance algorithm[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 915-926. |
36 | YANG R Q, LIU X F. Gravity-turn-based precise landing guidance for reusable rockets[C]∥ Advances in Guidance, Navigation and Control. Singapore: Springer, 2022: 3423-3434. |
37 | CHENG R K, CONRAD D A, MEREDITH C M. Design considerations for Surveyor guidance[J]. Journal of Spacecraft and Rockets, 1966, 3(11): 1569-1576. |
38 | INGOLDBY R N. Guidance and control system design of the Viking planetary lander[J]. Journal of Guidance and Control, 1978, 1(3): 189-196. |
39 | SOSTARIC R, REA J. Powered descent guidance methods for the moon and Mars: AIAA-2005-6287[R]. Reston: AIAA, 2005. |
40 | PLOEN S, ACIKMESE B, WOLF A. A comparison of powered descent guidance laws for Mars pinpoint landing: AIAA-2006-6676[R]. Reston: AIAA, 2006. |
41 | NAJSON F, MEASE K D. Computationally inexpensive guidance algorithm for fuel-efficient terminal descent[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4): 955-964. |
42 | UENO S, YAMAGUCHI Y. 3-dimensional near-minimum fuel guidance law of a lunar landing module: AIAA-1999-3983[R]. Reston: AIAA, 1999. |
43 | CHRISTOPHER N D. An optimal guidance law for planetary landing: AIAA-1997-3709[R]. Reston: AIAA, 1997. |
44 | EBRAHIMI B, BAHRAMI M, ROSHANIAN J. Optimal sliding-mode guidance with terminal velocity constraint for fixed-interval propulsive maneuvers[J]. Acta Astronautica, 2008, 62(10-11): 556-562. |
45 | GUO Y N, HAWKINS M, WIE B. Applications of generalized zero-effort-miss/zero-effort-velocity feedback guidance algorithm[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3): 810-820. |
46 | SIMPLÍCIO P, MARCOS A, BENNANI S. Guidance of reusable launchers: Improving descent and landing performance[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(10): 2206-2219. |
47 | GUO Y N, HAWKINS M, WIE B. Optimal feedback guidance algorithms for planetary landing and asteroid intercept[J]. Advances in the Astronautical Sciences, 2012, 142: 2913-2931. |
48 | ZHOU L Y, XIA Y Q. Improved ZEM/ZEV feedback guidance for Mars powered descent phase[J]. Advances in Space Research, 2014, 54(11): 2446-2455. |
49 | GUO Y N, HAWKINS M, WIE B. Waypoint-optimized zero-effort-miss/zero-effort-velocity feedback guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3): 799-809. |
50 | FURFARO R, GAUDET B, WIBBEN D R, et al. Development of non-linear guidance algorithms for asteroids close-proximity operations: AIAA-2013-4711[R]. Reston: AIAA, 2013. |
51 | MEDITCH J. On the problem of optimal thrust programming for a lunar soft landing[J]. IEEE Transactions on Automatic Control, 1964, 9(4): 477-484. |
52 | HULL D G. Thrust programs for minimum propellant consumption during the vertical take-off and landing of a rocket[J]. Journal of Optimization Theory and Applications, 1967, 1(1): 53-69. |
53 | LAWDEN D F. Optimal trajectories for space navigation[M]. London: Butterworths, 1963. |
54 | TOPCU U, CASOLIVA J, MEASE K. Fuel efficient powered descent guidance for Mars landing: AIAA-2005-6286[R]. Reston: AIAA, 2005. |
55 | YOU S X, DAI R, REA J R. Theoretical analysis of fuel-optimal powered descent problem with state constraints[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(12): 2350-2359. |
56 | REA J, BISHOP R. Analytical dimensional reduction of a fuel optimal powered descent subproblem: AIAA-2010-8026[R]. Reston: AIAA, 2010. |
57 | LU P. Propellant-optimal powered descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(4): 813-826. |
58 | ACIKMESE B, AUNG M, CASOLIVA J, et al. Flight testing of trajectories computed by G-FOLD: Fuel optimal large divert guidance algorithm for planetary landing[J]. Advances in the Astronautical Sciences, 2013, 148: 386. |
59 | DUERI D, ZHANG J, ACIKMESE B. Automated custom code generation for embedded, real-time second order cone programming[J]. IFAC Proceedings Volumes, 2014, 47(3): 1605-1612. |
60 | DUERI D, ACIKMESE B, SCHARF D P, et al. Customized real-time interior-point methods for onboard powered-descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(2): 197-212. |
61 | MALYUTA D, REYNOLDS T P, SZMUK M, et al. Convex optimization for trajectory generation: A tutorial on generating dynamically feasible trajectories reliably and efficiently[J]. IEEE Control Systems, 2022, 42(5): 40-113. |
62 | ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1353-1366. |
63 | ACIKMESE B, BLACKMORE L. Lossless convexification of a class of optimal control problems with non-convex control constraints[J]. Automatica, 2011, 47(2): 341-347. |
64 | ACIKMESE B, CARSON J M, BLACKMORE L. Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6): 2104-2113. |
65 | CARSON J M, ACIKMESE B, BLACKMORE L, et al. Capabilities of convex powered-descent guidance algorithms for pinpoint and precision landing[C]∥ 2011 Aerospace Conference. Piscataway: IEEE Press, 2011: 1-8. |
66 | CARSON J M, ACIKMESE B, BLACKMORE L. Lossless convexification of powered-descent guidance with non-convex thrust bound and pointing constraints[C]∥ Proceedings of the 2011 American Control Conference. Piscataway: IEEE Press, 2011: 2651-2656. |
67 | MALYUTA D, ACIKMESE B. Lossless convexification of optimal control problems with semi-continuous inputs[J]. IFAC-PapersOnLine, 2020, 53(2): 6843-6850. |
68 | BLACKMORE L, ACIKMESE B, CARSON J M. Lossless convexification of control constraints for a class of nonlinear optimal control problems[J]. Systems & Control Letters, 2012, 61(8): 863-870. |
69 | HARRIS M W, ACIKMESE B. Lossless convexification for a class of optimal control problems with linear state constraints[C]∥ 52nd IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2013: 7113-7118. |
70 | HARRIS M W, ACIKMESE B. Lossless convexification of non-convex optimal control problems for state constrained linear systems[J]. Automatica, 2014, 50(9): 2304-2311. |
71 | HARRIS M W, ACIKMESE B. Lossless convexification for a class of optimal control problems with quadratic state constraints[C]∥ 2013 American Control Conference. Piscataway: IEEE Press, 2013: 3415-3420. |
72 | HARRIS M W, ACIKMESE B. Maximum divert for planetary landing using convex optimization[J]. Journal of Optimization Theory and Applications, 2014, 162(3): 975-995. |
73 | LIU X F, LU P. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 750-765. |
74 | MAO Y Q, SZMUK M, ACIKMESE B. Successive convexification of non-convex optimal control problems and its convergence properties[C]∥ 2016 IEEE 55th Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2016: 3636-3641. |
75 | 邵楠, 闫晓东. 火箭垂直回收多阶段最优轨迹规划方法[J]. 宇航学报, 2019, 40(10): 1187-1196. |
SHAO N, YAN X D. Multi-stage trajectory optimization for vertical pin-point landing of a reusable launch vehicle[J]. Journal of Astronautics, 2019, 40(10): 1187-1196 (in Chinese). | |
76 | WANG J B, CUI N G. A pseudospectral-convex optimization algorithm for rocket landing guidance: AIAA-2018-1871[R]. Reston: AIAA, 2018. |
77 | 王劲博, 崔乃刚, 郭继峰, 等. 火箭返回着陆问题高精度快速轨迹优化算法[J]. 控制理论与应用, 2018, 35(3): 389-398. |
WANG J B, CUI N G, GUO J F, et al. High precision rapid trajectory optimization algorithm for launch vehicle landing[J]. Control Theory & Applications, 2018, 35(3): 389-398 (in Chinese). | |
78 | 王嘉炜, 张冉, 郝泽明, 等. 基于Proximal-Newton-Kantorovich凸规划的空天飞行器实时轨迹优化[J]. 航空学报, 2020, 41(11): 624051. |
WANG J W, ZHANG R, HAO Z M, et al. Real-time trajectory optimization for hypersonic vehicles with Proximal-Newton-Kantorovich convex programming[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 624051 (in Chinese). | |
79 | WANG J W, ZHANG R, LI H F. Onboard optimization of multi-arc trajectories with constraints on duration of arcs[J]. Acta Astronautica, 2022, 192: 434-442. |
80 | 郝泽明, 张冉, 王嘉炜, 等. 大气层内固体火箭实时轨迹优化方法[J]. 宇航学报, 2021, 42(11): 1416-1426. |
HAO Z M, ZHANG R, WANG J W, et al. Real-time atmospheric trajectory optimization for solid rockets[J]. Journal of Astronautics, 2021, 42(11): 1416-1426 (in Chinese). | |
81 | WANG J B, CUI N G, WEI C Z. Optimal rocket landing guidance using convex optimization and model predictive control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(5): 1078-1092. |
82 | XIONG F F, LI C, ZHAO Y, et al. Rocket landing guidance using convex optimization and proportional navigation considering performance-limited engine[J]. Acta Astronautica, 2022, 201: 209-223. |
83 | 安泽, 熊芬芬, 梁卓楠. 基于偏置比例导引与凸优化的火箭垂直着陆制导[J]. 航空学报, 2020, 41(5): 323606. |
AN Z, XIONG F F, LIANG Z N. Landing-phase guidance of rocket using bias proportional guidance and convex optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 323606 (in Chinese). | |
84 | LI J Q, LONG Y S, SU M, et al. Fault-tolerant guidance of rocket vertical landing phase based on MPC framework[J]. International Journal of Aerospace Engineering, 2022, 2022: 1-11. |
85 | BLACKMORE L. Autonomous precision landing of space rockets[C]∥ Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2016 Symposium. Washington: The Bridge, 2016, 46: 15-20. |
86 | SCHARF D P, AÇıKMEŞE B, DUERI D, et al. Implementation and experimental demonstration of onboard powered-descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(2): 213-229. |
87 | REYNOLDS T, MALYUTA D, MESBAHI M, et al. Funnel synthesis for the 6-DOF powered descent guidance problem: AIAA-2021-0504[R]. Reston: AIAA, 2021. |
88 | SÁNCHEZ-SÁNCHEZ C, IZZO D. Real-time optimal control via deep neural networks: study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1122-1135. |
89 | WANG J B, MA H J, LI H X, et al. Real-time guidance for powered landing of reusable rockets via deep learning[J]. Neural Computing and Applications, 2023, 35(9): 6383-6404. |
90 | YOU S X, WAN C H, DAI R, et al. Learning-based onboard guidance for fuel-optimal powered descent[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(3): 601-613. |
91 | HENDRIX S G, KENNY V, YOU S X, et al. Experimental testing for a learning-based powered-descent guidance algorithm: AIAA-2022-0952. Reston: AIAA, 2022. |
92 | LI W B, GONG S P. Free final-time fuel-optimal powered landing guidance algorithm combing lossless convex optimization with deep neural network predictor[J]. Applied Sciences, 2022, 12(7): 3383. |
93 | SONG Y, MIAO X Y, CHENG L, et al. The feasibility criterion of fuel-optimal planetary landing using neural networks[J]. Aerospace Science and Technology, 2021, 116: 106860. |
94 | 何林坤, 张冉, 龚庆海. 基于强化学习的可回收运载火箭着陆制导[J]. 空天防御, 2021, 4(3): 33-40. |
HE L K, ZHANG R, GONG Q H. Landing guidance of reusable launch vehicle based on reinforcement learning[J]. Air & Space Defense, 2021, 4(3): 33-40 (in Chinese). | |
95 | FURFARO R, SCORSOGLIO A, LINARES R, et al. Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via a deep reinforcement learning approach[J]. Acta Astronautica, 2020, 171: 156-171. |
96 | D’AMBROSIO A, SCHIASSI E, CURTI F, et al. Physics-informed neural networks applied to a series of constrained space guidance problems[C]∥ 2021 AAS/AIAA Astrodynamics Specialist Conference. American Astronautical Society, 2021. |
97 | 崔乃刚, 吴荣, 韦常柱, 等. 火箭垂直返回双幂次固定时间收敛滑模控制方法[J]. 哈尔滨工业大学学报, 2020, 52(4): 15-24. |
CUI N G, WU R, WEI C Z, et al. Double-order power fixed-time convergence sliding mode control method for launch vehicle vertical returning[J]. Journal of Harbin Institute of Technology, 2020, 52(4): 15-24 (in Chinese). | |
98 | ZHANG L, WEI C Z, WU R, et al. Adaptive fault-tolerant control for a VTVL reusable launch vehicle[J]. Acta Astronautica, 2019, 159: 362-370. |
99 | LIANG X H, WANG Q, HU C H, et al. Fixed-time observer based fault tolerant attitude control for reusable launch vehicle with actuator faults[J]. Aerospace Science and Technology, 2020, 107: 106314. |
100 | JU X Z, WEI C Z, XU H C, et al. Fractional-order sliding mode control with a predefined-time observer for VTVL reusable launch vehicles under actuator faults and saturation constraints[J]. ISA Transactions, 2022, 129: 55-72. |
101 | JU X Z, WEI C Z, ZHANG L, et al. Semi-globally smooth control for VTVL reusable launch vehicle under actuator faults and attitude constraints[J]. Acta Astronautica, 2022, 191: 528-546. |
102 | KWON J W, LEE D H, BANG H. Virtual trajectory augmented landing control based on dual quaternion for lunar lander[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(9): 2044-2057. |
103 | Van LEEUWEN S, SKIBIK T, NICOTRA M, et al. A nonlinear predictive control strategy for landing on an asteroid[C]∥ 2022 American Control Conference (ACC). Piscataway: IEEE Press, 2022: 443-449. |
104 | JOHNSON M. A parameterized approach to the design of lunar lander attitude controllers: AIAA-2006-6564[R]. Reston: AIAA, 2006. |
105 | SAGLIANO M, DUMKE M, THEIL S. Simulations and flight tests of a new nonlinear controller for the EAGLE lander[J]. Journal of Spacecraft and Rockets, 2018, 56(1): 259-272. |
106 | ORR J S, SHTESSEL Y B. Lunar spacecraft powered descent control using higher-order sliding mode techniques[J]. Journal of the Franklin Institute, 2012, 349(2): 476-492. |
107 | 伊鑫, 潘豪, 黄聪, 等. 垂直回收运载火箭高精度姿态控制技术[J]. 深空探测学报(中英文), 2022, 9(5): 492-497. |
YI X, PAN H, HUANG C, et al. High precision attitude control technology of vertical landing returning rocket[J]. Journal of Deep Space Exploration, 2022, 9(5): 492-497 (in Chinese). | |
108 | 李璟澜, 杨秦敏. 带预设性能的火箭垂直着陆段姿态自适应控制设计[J]. 宇航总体技术, 2020, 4(5): 1-7. |
LI J L, YANG Q M. Adaptive attitude control in the landing phase of rocket vertical recovery with prescribed performance[J]. Astronautical Systems Engineering Technology, 2020, 4(5): 1-7 (in Chinese). | |
109 | SIMPLÍCIO P, MARCOS A, BENNANI S. Launcher flight control design using robust wind disturbance observation[J]. Acta Astronautica, 2021, 186: 303-318. |
110 | WONG E C, SINGH G, MASCIARELLI J P. Guidance and control design for hazard avoidance and safe landing on Mars[J]. Journal of Spacecraft and Rockets, 2006, 43(2): 378-384. |
111 | DELAUNE J, DE ROSA D, HOBBS S. Guidance and control system design for lunar descent and landing: AIAA-2010-8028[R]. Reston: AIAA, 2010. |
112 | REW D Y, JU G, LEE S, et al. Control system design of the Korean lunar lander demonstrator[J]. Acta Astronautica, 2014, 94(1): 328-337. |
113 | STENGEL R F. Manual attitude control of the lunar module[J]. Journal of Spacecraft and Rockets, 1970, 7(8): 941-948. |
114 | BILIMORIA K D. Effects of control power and guidance cues on lunar lander handling qualities[J]. Journal of Spacecraft and Rockets, 2009, 46(6): 1261-1271. |
115 | BIHARI B. Challenges of roll orientation with respect to vehicle heading at touchdown for the Orion command module: AAS 08-068[R]. Breckenridge: American Astronautical Society, 2008. |
116 | YAMASHITA T, UO M, HASHIMOTO T. Nonlinear six-degree-of-freedom control for flexible spacecraft[J]. IFAC Proceedings Volumes, 2001, 34(15): 344-349. |
117 | ZHANG H H, LI J, WANG Z G, et al. Guidance navigation and control for Chang’E-5 powered descent[J]. Space: Science & Technology, 2021, 2021: 9823609. |
118 | HUANG X Y, XU C, HU J C, et al. Powered-descent landing GNC system design and flight results for Tianwen-1 mission[J]. Astrodynamics, 2022, 6(1): 3-16. |
119 | WALL J H, ORR J S, VANZWIETEN T S. Space launch system implementation of adaptive augmenting control:AIAA 14-051[R]. Breckenridge: American Astronautical Society, 2014. |
120 | HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. |
121 | 韩京清. 自抗扰控制技术[J]. 前沿科学, 2007, 1(1): 24-31. |
HAN J Q. Auto disturbances rejection control technique[J]. Frontier Science, 2007, 1(1): 24-31 (in Chinese). | |
122 | 果琳丽, 谷良贤, 田林, 等. 载人月面着陆器动力下降段自适应姿态控制[J]. 哈尔滨工业大学学报, 2013, 45(5): 119-123. |
GUO L L, GU L X, TIAN L, et al. Adaptive attitude control for manned lunar lander during the powered descent phase[J]. Journal of Harbin Institute of Technology, 2013, 45(5): 119-123 (in Chinese). | |
123 | SUN L, SUN G, JIANG J J. Adaptive guidance and control of uncertain lunar landers in terminal landing phases[J]. Mechanical Systems and Signal Processing, 2020, 142: 106763. |
124 | WIDNALL W S. The minimum-time thrust-vector control law in the Apollo lunar-module autopilot[J]. IFAC Proceedings Volumes, 1970, 3(1): 136-153. |
125 | PONTANI M, CELANI F, CARLETTA S. Lunar descent and landing via two-phase explicit guidance and pulse-modulated reduced-attitude control: AIAA-2022-0252[R]. Reston: AIAA, 2022. |
126 | BOSKOVIC J D, JACKSON J A, MEHRA R K, et al. Adaptive fault tolerant control design for a model of DC-X dynamics[C]∥ 2008 American Control Conference. Piscataway: IEEE Press, 2008: 1046-1051. |
127 | SANTOSO F, GARRATT M A, ANAVATTI S G. State-of-the-art integrated guidance and control systems in unmanned vehicles: A review[J]. IEEE Systems Journal, 2021, 15(3): 3312-3323. |
128 | 郭建国, 梁乐成, 周敏, 等. 高速飞行器俯冲段制导控制一体化综述[J]. 航空兵器, 2023, 30(1): 1-10. |
GUO J G, LIANG L C, ZHOU M, et al. Overview of integrated guidance and control for hypersonic vehicles in dive phase[J]. Aero Weaponry, 2023, 30(1): 1-10 (in Chinese). | |
129 | 薛文超, 黄朝东, 黄一. 飞行制导控制一体化设计方法综述[J]. 控制理论与应用, 2013, 30(12): 1511-1520. |
XUE W C, HUANG C D, HUANG Y. Design methods for the integrated guidance and control system[J]. Control Theory & Applications, 2013, 30(12): 1511-1520 (in Chinese). | |
130 | SHTESSEL Y B, TOURNES C H. Integrated higher-order sliding mode guidance and autopilot for dual control missiles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 79-94. |
131 | 董飞垚, 雷虎民, 周池军, 等. 导弹鲁棒高阶滑模制导控制一体化研究[J]. 航空学报, 2013, 34(9): 2212-2218. |
DONG F Y, LEI H M, ZHOU C J, et al. Research of integrated robust high order sliding mode guidance and control for missiles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2212-2218 (in Chinese). | |
132 | SEYEDIPOUR S H, JEGARKANDI M F, SHAMAG HDARI S. Nonlinear integrated guidance and control based on adaptive backstepping scheme[J]. Aircraft Engineering and Aerospace Technology, 2017, 89(3): 415-424. |
133 | 舒燕军, 唐硕. 轨控式复合控制导弹制导与控制一体化反步设计[J]. 宇航学报, 2013, 34(1): 79-85. |
SHU Y J, TANG S. Integrated guidance and control backstepping design for blended control missile based on NDO[J]. Journal of Astronautics, 2013, 34(1): 79-85 (in Chinese). | |
134 | 张尧, 郭杰, 唐胜景, 等. 导弹制导与控制一体化三通道解耦设计方法[J]. 航空学报, 2014, 35(12): 3438-3450. |
ZHANG Y, GUO J, TANG S J, et al. Integrated missile guidance and control three-channel decoupling design method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3438-3450 (in Chinese). | |
135 | CHWA D, CHOI J Y, ANAVATTI S G. Observer-based adaptive guidance law considering target uncertainties and control loop dynamics[J]. IEEE Transactions on Control Systems Technology, 2006, 14(1): 112-123. |
136 | 刘晓东, 黄万伟, 杜立夫. 含攻击角度约束的三维制导控制一体化鲁棒设计方法[J]. 控制理论与应用, 2016, 33(11): 1535-1542. |
LIU X D, HUANG W W, DU L F. Robust design approach of three-dimensional integrated guidance and control containing impact angle constraints[J]. Control Theory & Applications, 2016, 33(11): 1535-1542 (in Chinese). | |
137 | ZHANG F, DUAN G R. Integrated translational and rotational control for the terminal landing phase of a lunar module[J]. Aerospace Science and Technology, 2013, 27(1): 112-126. |
138 | CORTÉS-MARTÍNEZ R, KUMAR K D, RODRÍGUE Z-CORTÉS H. Precise power descent control of a lunar lander using a single thruster[J]. Acta Astronautica, 2021, 186: 473-485. |
139 | MALYUTA D, REYNOLDS T, SZMUK M, et al. Discretization performance and accuracy analysis for the rocket powered descent guidance problem: AIAA-2019-0925[R]. Reston: AIAA, 2019. |
140 | TOPCU U, CASOLIVA J, MEASE K D. Minimum-fuel powered descent for Mars pinpoint landing[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 324-331. |
141 | REYNOLDS T P, MESBAHI M. Optimal planar powered descent with independent thrust and torque[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(7): 1225-1231. |
142 | REYNOLDS T, MALYUTA D, MESBAHI M, et al. A real-time algorithm for non-convex powered descent guidance: AIAA-2020-0844[R]. Reston: AIAA, 2020. |
143 | HE X, ZHAO K Y, CHU X W. AutoML: a survey of the state-of-the-art[J]. Knowledge-Based Systems, 2021, 212: 106622. |
144 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. |
[1] | Shengzhe SHAN, Weiwei ZHANG. Air combat intelligent decision-making method based on self-play and deep reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328723-328723. |
[2] | Hongyan ZHANG, Wei WANG, Shiwei CHEN, Yi JI, Jiaqi LIU. Integrated guidance and control design based on fully actuated system method [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628891-628891. |
[3] | Wu LIU, Yunyan WU, Wei LIU, Mingming TIAN, Tianpeng HUANG. Re-entry robust fault tolerant attitude control for RLVs considering unknown disturbances [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727787-727787. |
[4] | Yan LYU, Lin LIU, Guangyong ZHANG, Lei LIANG, Xuesheng ZHENG. Reusable technology of air⁃launched launch vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628083-628083. |
[5] | Mengqi GU, Jiacai ZHU, Wanlin GUO, Song XUE. Prospects for fatigue durability and reliability of reusable launch vehicle structures [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628299-628299. |
[6] | Zhi ZHANG, Han YUAN, Wanqing ZHANG. Powered deceleration guidance method based on gravity-turn analytical solutions [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628483-628483. |
[7] | Weimin BAO. A review of reusable launch vehicle technology development [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629555-629555. |
[8] | Yuwei LIU, Yuqiang CHENG, Jianjun WU. Research progress of intelligent control methods in space propulsion systems [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528505-528505. |
[9] | WANG Hao, CHEN Genliang. Research progress and perspective of robotic equipment applied in aviation assembly [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 626128-626128. |
[10] | HU Qinglei, SHAO Xiaodong, YANG Haoyang, DUAN Chao. Spacecraft attitude planning and control under multiple constraints: Review and prospects [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527351-527351. |
[11] | CAI Guobiao, ZHANG Baiyi, HE Bijiao, WENG Huiyan, LIU Lihui. Intelligent computation of vacuum plume [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527352-527352. |
[12] | SUN Zhixiao, YANG Shengqi, PIAO Haiyin, BAI Chengchao, GE Jun. A survey of air combat artificial intelligence [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525799-525799. |
[13] | DING Mingsong, LIU Qingzong, JIANG Tao, DONG Weizhong, GAO Tiesuo, FU Yang'aoxiao. Simulation of magnetohydrodynamic heat shield system on reusable launch vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 124501-124501. |
[14] | ZHANG Weiwei, KOU Jiaqing, LIU Yilang. Prospect of artificial intelligence empowered fluid mechanics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524689-524689. |
[15] | DING Guoru, SUN Jiachen, WANG Haichao, JIAO Yutao. Discussion on technologies for intelligent spectrum management and control under complex electromagnetic environments [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524750-524750. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341