Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (5): 531485.doi: 10.7527/S1000-6893.2024.31485
• Fluid Mechanics and Flight Mechanics • Previous Articles
Guanghui WU1, Jing WANG2, Hairun XIE3, Tuliang MA3, Qiang MIAO1, Jixin XIANG3, Miao ZHANG3(
)
Received:2024-11-04
Revised:2024-11-06
Accepted:2024-11-22
Online:2024-12-02
Published:2024-11-29
Contact:
Miao ZHANG
E-mail:zhangm-168@163.com
Supported by:CLC Number:
Guanghui WU, Jing WANG, Hairun XIE, Tuliang MA, Qiang MIAO, Jixin XIANG, Miao ZHANG. Data and knowledge-enabled intelligent aerodynamic design for civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531485.
| 1 | MARTINS J R R A. Aerodynamic design optimization: Challenges and perspectives[J]. Computers & Fluids, 2022, 239: 105391. |
| 2 | MARTINS J R R A. A coupled-adjoint method for high-fidelity aero-structural optimization[D]. California: Stanford University, 2003. |
| 3 | KIM H J, NAKAHASHI K, OBAYASHI S, et al. Aerodynamic optimization of supersonic transport wing using unstructured adjoint method[J]. AIAA Journal, 2001, 39(6): 1011-1020. |
| 4 | ARIAS-MONTAÑO A, COELLO COELLO C A, MEZURA-MONTES E. Evolutionary algorithms applied to multi-objective aerodynamic shape optimization[M]∥Computational optimization, methods and algorithms. Berlin, Heidelberg: Springer, 2011: 211-240. |
| 5 | LI R Z, ZHANG M, ZHANG M H, et al. Multi-point aerodynamic optimization design of a dual-aisle airplane wing[C]∥31st Congress of the International Council of the Aeraonautical Sciences. Beijing: ICAS, 2018. |
| 6 | HUANG J T, ZHU Z, GAO Z H, et al. Aerodynamic multi-objective integrated optimization based on principal component analysis [J]. Chinese Journal of Aeronautics, 2017, 30(4): 1336-1348. |
| 7 | OBAYASHI S, JEONG S, CHIBA K. Multi-objective design exploration for aerodynamic configurations[C]∥35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005. |
| 8 | ZUHAL L R, PALAR P S, SHIMOYAMA K. A comparative study of multi-objective expected improvement for aerodynamic design[J]. Aerospace Science and Technology, 2019, 91: 548-560. |
| 9 | WANG HC, FU TF, DU Y, et al. Scientific discovery in the age of artificial intelligence[J]. Nature, 2023, 620(7972): 47-60. |
| 10 | LI J C, BOUHLEL M A, MARTINS JOAQUIM R R A. Data-based approach for fast airfoil analysis and optimization [J]. AIAA Journal, 2019, 57(2): 581-596. |
| 11 | LIU R L, HUA Y, ZHOU Z F, et al. Prediction and optimization of airfoil aerodynamic performance using deep neural network coupled Bayesian method [J]. Physics of Fluids, 2022, 34(11): 117116. |
| 12 | HERNÁNDEZ-LOBATO J M, ADAMS R P. Probabilistic backpropagation for scalable learning of Bayesian neural networks[C]∥International Conference on Machine Learning. 2015. |
| 13 | SEKAR V, JIANG Q H, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5): 057103. |
| 14 | WANG J, HE C, LI R Z, et al. Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework[J]. Physics of Fluids, 2021, 33(8): 086108. |
| 15 | LI J C, DU X S, MARTINS JOAQUIM R R A. Machine learning in aerodynamic shape optimization[J]. Progress in Aerospace Sciences, 2022, 134: 100849. |
| 16 | KOU J Q, ZHANG W W. Data-driven modeling for unsteady aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 125: 100725. |
| 17 | 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480. |
| CHEN H X, DENG K W, LI R Z. Application of machine learning techniques in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480 (in Chinese). | |
| 18 | 孙刚, 王聪, 王立悦, 等. 人工智能在气动设计中的应用与展望[J]. 民用飞机设计与研究, 2021(3): 1-9, 147. |
| SUN G, WANG C, WANG L Y, et al. Application and prospect of artificial intelligence in aerodynamic design[J]. Civil Aircraft Design & Research, 2021(3): 1-9, 147 (in Chinese). | |
| 19 | DONG Y Q, TAO J, ZHANG Y M, et al. Deep learning in aircraft design, dynamics, and control: Review and prospects[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2346-2368. |
| 20 | LE CLAINCHE S, FERRER E, GIBSON S, et al. Improving aircraft performance using machine learning: A review[J]. Aerospace Science and Technology, 2023, 138: 108354. |
| 21 | GUIDOTTI R, MONREALE A, RUGGIERI S, et al. A survey of methods for explaining black box models[J]. ACM computing surveys (CSUR), 2018, 51(5): 1-42. |
| 22 | SHAFIQUE M, NASEER M, THEOCHARIDES T, et al. Robust machine learning systems: Challenges, current trends, perspectives, and the road ahead[J]. IEEE Design & Test, 2020, 37(2): 30-57. |
| 23 | JOURDAN N, SEN S, HUSOM E J, et al. On the reliability of machine learning applications in manufacturing environments[DB/OL]. arXiv preprint: 2112.06986, 2021. |
| 24 | DOSHI-VELEZ F, KIM B. Considerations for evaluation and generalization in interpretable machine learning[M]∥Explainable and interpretable models in computer vision and machine learning. Cham: Springer, 2018: 3-17. |
| 25 | BARBIERO P, SQUILLERO G, TONDA A. Modeling generalization in machine learning: A methodological and computational study[DB/OL]. arXiv preprint: 2006.15680, 2020. |
| 26 | ROSCHER R, BOHN B, DUARTE M F, et al. Explainable machine learning for scientific insights and discoveries[J]. IEEE Access, 2020, 8: 42200-42216. |
| 27 | LI R Z, ZHANG Y F, CHEN H X. Physically interpretable feature learning of supercritical airfoils based on variational autoencoders[J]. AIAA Journal, 2022, 60(11): 6168-6182. |
| 28 | 李润泽, 张宇飞, 陈海昕. “人在回路” 思想在飞机气动优化设计中演变与发展[J]. 空气动力学学报, 2017, 35(4): 529-543. |
| LI R Z, ZHANG Y F, CHEN H X. Evolution and development of “man-in-loop” in aerodynamic optimization design[J]. Acta Aerodynamica Sinica, 2017, 35(4): 529-543 (in Chinese). | |
| 29 | CAI S, MAO Z, WANG Z, et al. Physics-informed neural networks (PINNs) for fluid mechanics: A review[J]. Acta Mechanica Sinica, 2021, 37(12): 1727-1738. |
| 30 | ZHAO T, ZHANG Y F, CHEN H X, et al. Supercritical wing design based on airfoil optimization and 2.75D transformation[J]. Aerospace Science and Technology, 2016, 56: 168-182. |
| 31 | INGER G R. Application of Oswatitsch’s theorem to supercritical airfoil drag calculation[J]. Journal of aircraft, 1993, 30(3): 415-416. |
| 32 | PEARCEY H H. Some effects of shock-induced separation of turbulent boundary layers in transonic flow past aerofoils: R. & M. No. 3108[R]. London: Her Majesty’s Stationery Office, 1959. |
| 33 | MASON W. Analytic models for technology integration in aircraft design[C]∥Aircraft Design, Systems and Operations Conference. Reston: AIAA, 1990. |
| 34 | LI R Z, ZHANG Y F, CHEN H X. Knowledge discovery with computational fluid dynamics: Supercritical airfoil database and drag divergence prediction[J]. Physics of Fluids, 2023, 35(1): 016113 |
| 35 | 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1): 522759. |
| CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522759 (in Chinese). | |
| 36 | 李润泽, 张宇飞, 陈海昕. 超临界机翼多目标气动优化设计的策略与方法[J]. 航空学报, 2020, 41(5): 623409. |
| LI R Z, ZHANG Y F, CHEN H X. Strategies and methods for multi-objective aerodynamic optimization design for supercritical wings[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623409 (in Chinese). | |
| 37 | LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166. |
| 38 | YAN C Y, LI H R, ZHANG Y F, et al. Data-driven turbulence modeling in separated flows considering physical mechanism analysis[J]. International Journal of Heat and Fluid Flow, 2022, 96: 109004. |
| 39 | DENG Z W, WANG J, LIU H S, et al. Prediction of transonic flow over supercritical airfoils using geometric-encoding and deep-learning strategies[J]. Physics of Fluids, 2023, 35(7): 075146. |
| 40 | CHEN L W, THUEREY N. Towards high-accuracy deep learning inference of compressible flows over aerofoils[J]. Computers & Fluids, 2023, 250: 105707. |
| 41 | LONG Z, LU Y, MA X, et al. PDE-net: Learning PDEs from data[C]∥International Conference on Machine Learning. 2018. |
| 42 | QU J G, CAI W H, ZHAO Y J. Learning time-dependent PDEs with a linear and nonlinear separate convolutional neural network[J]. Journal of Computational Physics, 2022, 453: 110928. |
| 43 | RAO C P, REN P, WANG Q, et al. Encoding physics to learn reaction-diffusion processes[J]. Nature Machine Intelligence, 2023, 5: 765-779. |
| 44 | YE Z H, HUANG X, CHEN L H, et al. PDEFORMER: Towards a foundation model for one-dimensional partial differential equations[DB/OL]. arXiv preprint: 2402.12652, 2024. |
| 45 | YU Y, YAO H P, LIU Y M. Aircraft dynamics simulation using a novel physics-based learning method[J]. Aerospace Science and Technology, 2019, 87: 254-264. |
| 46 | RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030. |
| 47 | RAISSI M, WANG Z C, TRIANTAFYLLOU M S, et al. Deep learning of vortex-induced vibrations[J]. Journal of Fluid Mechanics, 2019, 861: 119-137. |
| 48 | YANG Y J, LI R Z, ZHANG Y F, et al. Flow field prediction of airfoil off-design conditions based on a modified variational autoencoder[J]. AIAA Journal, 2022, 60(10): 5805-5820. |
| 49 | CHEN Y T, HUANG D, ZHANG D X, et al. Theory-guided hard constraint projection (hcp): A knowledge-based data-driven scientific machine learning method[J]. Journal of Computational Physics, 2021, 445: 110624. |
| 50 | DU M G, CHEN Y T, ZHANG D X. Autoke: An automatic knowledge embedding framework for scientific machine learning[J]. IEEE Transactions on Artificial Intelligence, 2023; 4(6): 1564-1578. |
| 51 | HOLLAND J R, BAEDER J D, DURAISAMY K. Field inversion and machine learning with embedded neural networks: Physics-consistent neural network training[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
| 52 | DOHERTY P, LUKASZEWICZ W, SZALAS A. Knowledge representation techniques: A rough set approach[M]∥Studies in Fuzziness and Soft Computing. Berlin: Springer, 2006. |
| 53 | PAWAR S, SAN O, AKSOYLU B, et al. Physics guided machine learning using simplified theories[J]. Physics of Fluids, 2021, 33(1): 011701. |
| 54 | WANG X, KOU J Q, ZHANG W W, et al. Incorporating physical models for dynamic stall prediction based on machine learning[J]. AIAA Journal, 2022, 60(7): 4428-4439. |
| 55 | XIE H R, WANG J, ZHANG M. Knowledge-embedded meta-learning model for lift coefficient prediction of airfoils[J]. Expert Systems with Applications, 2023, 233: 121002. |
| 56 | LI S P, SNAIKI R, WU T. A knowledge-enhanced deep reinforcement learning-based shape optimizer for aerodynamic mitigation of wind-sensitive structures[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(6): 733-746. |
| 57 | LI R Z, ZHANG Y F, CHEN H X. Transfer learning from two-dimensional supercritical airfoils to three-dimensional transonic swept wings[J]. Chinese Journal of Aeronautics, 2023, 36(9): 96-110. |
| 58 | ANDRÉS-PÉREZ E. Data mining and machine learning techniques for aerodynamic databases: Introduction, methodology and potential benefits[J]. Energies, 2020, 13(21): 5807. |
| 59 | MAIMON O, ROKACH L. Data mining and knowledge discovery handbook: Vol. 2[M]. New York: Springer-Verlag, 2005. |
| 60 | HO T B. Knowledge discovery[J]. Knowledge Science, 2016: 70-93. |
| 61 | UDRESCU S M, TEGMARK M. AI Feynman: A physics-inspired method for symbolic regression[J]. Science Advances, 2020, 6(16): eaay2631. |
| 62 | PETER J E, DWIGHT R P. Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches[J]. Computers & Fluids, 2010, 39(3): 373-391. |
| 63 | CHIBA K, JEONG S, OBAYASHI S, et al. Knowledge discovery in aerodynamic design space for flyback-booster wing using data mining[C]∥14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006. |
| 64 | CHIBA K, JEONG S, OBAYASHI S, et al. Data mining for multidisciplinary design space of regional-jet wing[C]∥2005 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2005. |
| 65 | LUCHINI P, BOTTARO A. Adjoint equations in stability analysis[J]. Annual Review of Fluid Mechanics, 2014, 46: 493-517. |
| 66 | LIU G C, YAN S C. Active subspace: Toward scalable low-rank learning[J]. Neural Computation, 2012, 24 (12): 3371-3394. |
| 67 | Xu J S, Lou F Y. A rapid method for turbomachinery aerodynamic design and optimization using active subspace[J]. Journal of the Global Power and Propulsion Society, 2024, 8: 24-38. |
| 68 | LUKACZYK T W, CONSTANTINE P, PALACIOS F, et al. Active subspaces for shape optimization[C]∥10th AIAA Multidisciplinary Design Optimization Conference. Reston: AIAA, 2014. |
| 69 | LUO J Q, LIU F. Statistical evaluation of performance impact of manufacturing variability by an adjoint method[J]. Aerospace Science and Technology, 2018, 77: 471-484. |
| 70 | ANGELIS D, SOFOS F, KARAKASIDIS T E. Artificial intelligence in physical sciences: Symbolic regression trends and perspectives[J]. Archives of Computational Methods in Engineering, 2023, 30(6): 3845-3865. |
| 71 | MAKKE N, CHAWLA S. Interpretable scientific discovery with symbolic regression: A review[J]. Artificial Intelligence Review, 2024, 57(1): 2. |
| 72 | KEREN L S, LIBERZON A, LAZEBNIK T. A computational framework for physics-informed symbolic regression with straightforward integration of domain knowledge[J]. Scientific Reports, 2023, 13: 1249. |
| 73 | SCHMELZER M, DWIGHT R, CINNELLA P. Data-driven deterministic symbolic regression of nonlinear stress-strain relation for RANS turbulence modelling[C]∥2018 Fluid Dynamics Conference. Reston: AIAA, 2018. |
| 74 | VADDIREDDY H, RASHEED A, STAPLES A E, et al. Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data[J]. Physics of Fluids, 2020, 32(1): 015113. |
| 75 | WU C Y, ZHANG Y F. Enhancing the shear-stress-transport turbulence model with symbolic regression: A generalizable and interpretable data-driven approach[J]. Physical Review Fluids, 2023, 8(8): 084604. |
| 76 | SARRADJ E, GEYER T. Symbolic regression modeling of noise generation at porous airfoils[J]. Journal of Sound and Vibration, 2014, 333(14): 3189-3202. |
| 77 | GUO S Q, LIU W, ZHANG C N, et al. Aerodynamic optimization of hypersonic blunted waveriders based on symbolic regression[J]. Aerospace Science and Technology, 2024, 144: 108801. |
| 78 | RICHMOND-NAVARRO G, CALDERÓN-MUÑOZ W R, LEBOEUF R, et al. A Magnus wind turbine power model based on direct solutions using the blade element momentum theory and symbolic regression[J]. IEEE Transactions on Sustainable Energy, 2017, 8(1): 425-430. |
| 79 | PEARL J. Causal inference in statistics: An overview[J]. Statistics Surveys, 2009, 3: 96-146. |
| 80 | QUAN F X, SUN X M, ZHAO H Y, et al. Detection of rotating stall inception of axial compressors based on deep dilated causal convolutional neural networks[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(2): 1235-1243. |
| 81 | NEGREIRO D M P, JOKSIMOVIC A. Simple causal-network descriptive framework for aeroplane systems and the application to propulsive system sizing[C]∥AIAA Scitech 2024 Forum. Reston: AIAA, 2024. |
| 82 | WANG W, MO R, FAN Q M. Knowledge extraction from aerodynamic simulation data of compressor rotor[J]. Procedia Engineering, 2011, 15: 1792-1796. |
| 83 | VISWANATH A, FORRESTER A I J, KEANE A J. Dimension reduction for aerodynamic design optimization[J]. AIAA Journal, 2011, 49(6): 1256-1266. |
| 84 | QIU Y S, BAI J Q, LIU N, et al. Global aerodynamic design optimization based on data dimensionality reduction[J]. Chinese Journal of Aeronautics, 2018, 31(4): 643-659. |
| 85 | OYAMA A, NONOMURA T, FUJII K. Data mining of pareto-optimal transonic airfoil shapes using proper orthogonal decomposition[J]. Journal of Aircraft, 2010, 47(5): 1756-1762. |
| 86 | WANG J, XIE H, ZHANG M, et al. Physics-assisted reduced-order modeling for identifying dominant features of transonic buffet[J]. Physics of Fluids, 2023, 35(6): 066124. |
| 87 | WANG G G, SHAN S. Review of metamodeling techniques in support of engineering design optimization[C]∥Proceedings of ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2006. |
| 88 | MACKMAN T J, ALLEN C B, GHOREYSHI M, et al. Comparison of adaptive sampling methods for generation of surrogate aerodynamic models[J]. AIAA Journal, 2013, 51(4): 797-808. |
| 89 | AHMED M, QIN N. Surrogate-based aerodynamic design optimization: Use of surrogates in aerodynamic design optimization[J]. International Conference on Aerospace Sciences and Aviation Technology, 2009, 13: 1-26. |
| 90 | FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1): 50-79. |
| 91 | MACKMAN T J, ALLEN C B. Investigation of an adaptive sampling method for data interpolation using radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2010, 83(7): 915-938. |
| 92 | DENG K W, CHEN H X. A hybrid aerodynamic optimization algorithm based on differential evolution and RBF response surface[C]∥Proceedings of the 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2016. |
| 93 | LI R Z, DENG K W, ZHANG Y F, et al. Pressure distribution guided supercritical wing optimization[J]. Chinese Journal of Aeronautics, 2018, 31(9): 1842-1854. |
| 94 | LIU J, HAN Z H, SONG W P. Comparison of infill sampling criteria in kriging-based aerodynamic optimization[C]∥28th Congress of the International Council of the Aeronautical Sciences. 2012. |
| 95 | TOAL D J J, KEANE A J. Efficient multipoint aerodynamic design optimization via cokriging[J]. Journal of Aircraft, 2011, 48(5): 1685-1695. |
| 96 | HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced Kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal, 2017, 55(12): 4330-4346. |
| 97 | DASGUPTA S, HSU D. Hierarchical sampling for active learning[C]∥Proceedings of the 25th International Conference on Machine Learning-ICML ’08. New York: ACM, 2008. |
| 98 | MAYER C, TIMOFTE R. Adversarial sampling for active learning[C]∥2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2020. |
| 99 | LI R Z, ZHANG Y F, CHEN H X. Pressure distribution feature-oriented sampling for statistical analysis of supercritical airfoil aerodynamics[J]. Chinese Journal of Aeronautics, 2022, 35(4): 134-147. |
| 100 | XU M F, SONG S F, SUN X X, et al. Machine learning for adjoint vector in aerodynamic shape optimization[J]. Acta Mechanica Sinica, 2021, 37(9): 1416-1432. |
| 101 | LI J C, ZHANG M Q, MARTINS J R R A, et al. Efficient aerodynamic shape optimization with deep-learning-based geometric filtering[J]. AIAA Journal, 2020, 58(10): 4243-4259. |
| 102 | LI J C, HE S C, ZHANG M Q, et al. Physics-based data-driven buffet-onset constraint for aerodynamic shape optimization[J]. AIAA Journal, 2022, 60(8): 4775-4788. |
| 103 | LI J C, HE S C, MARTINS J R R A. Data-driven constraint approach to ensure low-speed performance in transonic aerodynamic shape optimization[J]. Aerospace Science and Technology, 2019, 92: 536-550. |
| 104 | YANG Y J, LI R Z, ZHANG Y F, et al. Buffet onset optimization for supercritical airfoils with prior-based pressure profile prediction model[C]∥Proceedings of the AIAA Scitech 2024 Forum. Reston: AIAA, 2024. |
| 105 | WU H, LUO H, WANG H, et. al . Transolver: A fast transformer solver for PDEs on general geometries[C]∥Forty-first International Conference on Machine Learning. 2024. |
| 106 | CAMPBELL R L, LYNDE M N. A knowledge-based optimization method for aerodynamic design[C]∥Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
| 107 | 李润泽. 流场结构-性能指标共同导向的优化设计[D]. 北京: 清华大学, 2021. |
| LI R Z. Optimization design jointly guided by flow field structures and performance metrics [D]. Beijing: Tsinghua University, 2021 (in Chinese). | |
| 108 | 张宇飞. 基于先进CFD方法的民用客机气动优化设计[D]. 北京: 清华大学, 2010. |
| ZHANG Y F. Aerodynamic optimization design of civil passenger aircraft based on advanced CFD method[D]. Beijing: Tsinghua University, 2010 (in Chinese). | |
| 109 | KINGMA D P, WELLING M. Auto-encoding variational bayes[C]∥2nd International Conference on Learning Representations. 2014. |
| 110 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]∥NIPS’14: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2014(2): 2672-2680. |
| 111 | HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851. |
| 112 | SUN K B, WANG W T, CHENG R, et al. Evolutionary generative design of supercritical airfoils: An automated approach driven by small data[J]. Complex & Intelligent Systems, 2024, 10(1): 1167-1183. |
| 113 | WANG C, WANG S Y, WANG L Y, et al. Framework of nacelle inverse design method based on improved generative adversarial networks[J]. Aerospace Science and Technology, 2022, 121: 107365. |
| 114 | CHEN W, CHIU K, FUGE M D. Airfoil design parameterization and optimization using Bézier generative adversarial networks[J]. AIAA Journal, 2020, 58(11): 4723-4735. |
| 115 | CAMPBELL R L, LYNDE M N. A knowledge-based optimization method for aerodynamic design[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
| 116 | LIU J, WU J Y, XIE H R, et al. AFBench: A large-scale benchmark for airfoil design[DB/OL]. arXiv preprint: 2406.18846, 2024. |
| 117 | WESTON D, ZEUNE C. Exercise of knowledge-based aerodynamic design process on the AFRL SUGAR model[C]∥AIAA Aviation 2022 Forum. Reston: AIAA, 2022. |
| 118 | 李润泽, 张宇飞, 陈海昕. 针对超临界翼型气动修型策略的强化学习[J]. 航空学报, 2021, 42(4): 523810. |
| LI R Z, ZHANG Y F, CHEN H X. Reinforcement learning method for supercritical airfoil aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 523810 (in Chinese). | |
| 119 | YAN X H, ZHU J H, KUANG M C, et al. Aerodynamic shape optimization using a novel optimizer based on machine learning techniques[J]. Aerospace Science and Technology, 2019, 86: 826-835. |
| 120 | QIN S, WANG S Y, WANG L Y, et al. Multi-objective optimization of cascade blade profile based on reinforcement learning[J]. Applied Sciences, 2020, 11(1): 106. |
| 121 | LIU Z Y, ZHANG M, SUN D, et al. A deep reinforcement learning optimization framework for supercritical airfoil aerodynamic shape design[J]. Structural and Multidisciplinary Optimization, 2024, 67(3): 34. |
| 122 | LI R Z, ZHANG Y F, CHEN H X. Learning the aerodynamic design of supercritical airfoils through deep reinforcement learning[J]. AIAA Journal, 2021, 59(10): 3988-4001. |
| 123 | HUI X Y, WANG H, LI W Q, et al. Multi-object aerodynamic design optimization using deep reinforcement learning[J]. AIP Advances, 2021, 11(8): 085311. |
| 124 | VIQUERAT J, RABAULT J, KUHNLE A, et al. Direct shape optimization through deep reinforcement learning[J]. Journal of Computational Physics, 2021, 428: 110080. |
| 125 | DUSSAUGE T P, SUNG W J, PINON FISCHER O J, et al. A reinforcement learning approach to airfoil shape optimization[J]. Scientific Reports, 2023, 13: 9753. |
| [1] | Yu ZENG, Hongbo WANG, Chengyue LIAN, Yixin YANG, Dapeng XIONG, Mingbo SUN, Weidong LIU. Applicability analysis of two improved methods of SST turbulence model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730574-730574. |
| [2] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
| [3] | Shengzhe SHAN, Weiwei ZHANG. Air combat intelligent decision-making method based on self-play and deep reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328723-328723. |
| [4] | Qi WANG, Long WU, Zhen LIU, Jianxia LIU, Liang XIA. Topology optimization design of thermoelastic multi-configuration gradient lattice structures [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(23): 230367-230367. |
| [5] | Mingqi LIU, Zhonghua HAN, Tao DU, Chenzhou XU, Han ZENG, Keshi ZHANG, Wenping SONG. Optimal control efficiency characteristics and wide-speed-range aerodynamic design optimization method for grid fins of launch vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 129887-129887. |
| [6] | Junshen LI, Xiangyan MENG, Nuannuan SHI, Wei LI, Ninghua ZHU, Ming LI. Intelligent processing of optical neural networks: Technological evolution and future prospects [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 630439-630439. |
| [7] | Xiaofei YANG, Tailu SUN, Dejun MENG, Haibao YIN, Yongmei WANG. Aerodynamic design method for core⁃driven fan stage considering multiple modes [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128625-128625. |
| [8] | Lizhuo DONG, Siqi ZHANG, Zhao ZHANG, Baohai WU. Prediction method of blade machining deformation driven by mechanism⁃data hybrid [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 629037-629037. |
| [9] | Ximing CUI, Zhipeng QIU, Jia WEI, Chi ZHANG, Kai SONG, Zhe LI, Shupeng WANG. Data-driven method for characterization of structural steel surface stress of magnetic Barkhausen noise [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 427237-427237. |
| [10] | Chunpeng LI, Zhansen QIAN, Xiasheng SUN. Trailing edge deformation matrix aerodynamic design for long-range civil aircraft variable camber wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 127335-127335. |
| [11] | Linkun HE, Wenchao XUE, Ran ZHANG, Huifeng LI. Guidance and control for powered descent and landing of launch vehicles: Overview and outlook [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628462-628462. |
| [12] | Xuhui ZHANG, Chunlei XIE, Sijia LIU, Ming YAN, Siyuan XING. Development needs and difficulty analysis for smart morphing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 529302-529302. |
| [13] | Xiaofeng WANG, Feng QU, Junjie FU, Zeyu WANG, Chaoyu LIU, Junqiang BAI. Discrete adjoint-based aerodynamic design optimization for hypersonic inward turning inlet [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128352-128352. |
| [14] | Yuwei LIU, Yuqiang CHENG, Jianjun WU. Research progress of intelligent control methods in space propulsion systems [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528505-528505. |
| [15] | Haoge LI, Hua YANG, Yuxin YANG, Weifang CHEN. Refinement optimization design for heat reduction on windward surface of hypersonic lifting body [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 124-137. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

