Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (23): 628299-628299.doi: 10.7527/S1000-6893.2023.28299
• Special Topic: Reusable Launch Vehicle Technology • Previous Articles Next Articles
Mengqi GU1, Jiacai ZHU2, Wanlin GUO1,2(), Song XUE2
Received:
2022-11-23
Revised:
2022-12-07
Accepted:
2023-02-27
Online:
2023-12-15
Published:
2023-03-17
Contact:
Wanlin GUO
E-mail:wlguo@nuaa.edu.cn
Supported by:
CLC Number:
Mengqi GU, Jiacai ZHU, Wanlin GUO, Song XUE. Prospects for fatigue durability and reliability of reusable launch vehicle structures[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628299-628299.
1 | 李东, 李平岐. 长征五号火箭技术突破与中国运载火箭未来发展[J]. 航空学报, 2022, 43(10): 527269. |
LI D, LI P Q. Technological breakthroughs of LM-5 and future developments of China’s launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527269 (in Chinese). | |
2 | SCOLES S. Prime mover[J]. Science, 2022, 377(6607): 702-705. |
3 | 郭万林, 邵忍平, 冯谦. 结构损伤监测的研究现状与展望[J]. 振动、测试与诊断, 2003, 23(2): 79-85. |
GUO W L, SHAO R P, FENG Q. A review and prospect of damage detection in structures[J]. Journal of Vibration, Measurement & Diagnosis, 2003, 23(2): 79-85. (in Chinese). | |
4 | CANDY J V, CASE J E, FISHER K A, et al. Vibrational processing of a dynamic structural flight system: A multichannel spectral estimation approach[J]. The Journal of the Acoustical Society of America, 2020, 147(4): 2694. |
5 | ELDRED K, ROBERTS W, WHITE R. Structural vibrations in space vehicles[M].Ohio: Aeronautical Systems Division, US Air Force, 1961. |
6 | 陈劲松, 曾玲芳, 平仕良, 等. 大型火箭发射喷水降噪技术研究进展[J]. 导弹与航天运载技术, 2019(2): 94-100. |
CHEN J S, ZENG L F, PING S L, et al. Advancesof water suppression technology for large rocket launching noise[J]. Missiles and Space Vehicles, 2019(2): 94-100 (in Chinese). | |
7 | 李海波, 任方, 秦朝红, 等. 国外运载火箭起飞噪声减缓技术研究进展[C]∥北京力学会第二十五届学术年会会议论文集. 北京: 北京力学学会, 2019: 1330-1332. |
LI H B, REN F, QIN C H, et al. Research Progress of Launch Vehicle Takeoff Noise Mitigation Technology Abroad[C]∥Proceedings of the 25th Annual Academic Conference of Beijing Society of Theoretical and Applied Mechanics. Beijing: Beijing Society of Theoretical and Applied Mechanics, 2019: 1330-1332 (in Chinese). | |
8 | HOLLKAMP J J, GORDON R W, SPOTTSWOOD S M. Nonlinear modal models for sonic fatigue response prediction: A comparison of methods[J]. Journal of Sound and Vibration, 2005, 284(3-5): 1145-1163. |
9 | OPPENHEIM B W, RUBIN S. Advanced Pogo stability analysis for liquid rockets[J]. Journal of Spacecraft and Rockets, 1993, 30(3): 360-373. |
10 | OSSAI C I, BOSWELL B, DAVIES I J. Pipeline failures in corrosive environments—A conceptual analysis of trends and effects[J]. Engineering Failure Analysis, 2015, 53: 36-58. |
11 | FREY M, HAGEMANN G. Flow separation and side-loads in rocket nozzles[C]∥Proceedings of the 35th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1999. |
12 | ÖSTLUND J, DAMGAARD T, FREY M. Side-load phenomena in highly overexpanded rocket nozzles[J]. Journal of Propulsion and Power, 2004, 20(4): 695-704. |
13 | 何光宇, 李应红, 柴艳, 等. 航空发动机压气机叶片砂尘冲蚀防护涂层关键问题综述[J]. 航空学报, 2015, 36(6): 1733-1743. |
HE G Y, LI Y H, CHAI Y, et al. Review of key issues on coating against sand erosion of aero-engine compressor blade[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 1733-1743 (in Chinese). | |
14 | ARAKERE N K, SWANSON G. Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(1): 161-176. |
15 | ARAKERE N K. High-temperature fatigue properties of single crystal superalloys in air and hydrogen[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(3): 590-603. |
16 | 郝贠洪, 邢永明, 杨诗婷. 风沙环境下钢结构表面涂层冲蚀行为与侵蚀机理研究[J]. 摩擦学学报, 2010, 30(1): 26-31. |
HAO Y H, XING Y M, YANG S T. Erosion-wear behavior of steel structure coating subject to sandstorm[J]. Tribology, 2010, 30(1): 26-31 (in Chinese). | |
17 | CASTANIER M P, PIERRE C. Modeling and analysis of mistuned bladed disk vibration: Current status and emerging directions[J]. Journal of Propulsion and Power, 2006, 22(2): 384-396. |
18 | ORSAGH R F, SHELDON J, KLENKE C J. Prognostics/diagnostics for gas turbine engine bearings[C]∥ 2003 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2003. |
19 | CHILDS D W. Turbomachinery rotordynamics: Phenomena, modeling, and analysis[M]. New York: Wiley, 1993. |
20 | HASHIMOTO T, YOSHIDA M, WATANABE M, et al. Experimental study on rotating cavitation of rocket propellant pump inducers[J]. Journal of Propulsion and Power, 1997, 13(4): 488-494. |
21 | 谭永华, 黄道琼, 李锋. 液体火箭发动机结构中的疲劳问题[C]∥中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集. 北京: 中国力学学会, 2017: 1530-1542. |
TAN Y H, HUANG D Q, LI F, et al. Fatigue problems for the liquid rocket engine structure [C]∥Proceedings of the Chinese Congress of Theoretical and Applied Mechanics 2017 and the 60th Anniversary Conference of the Chinese Society of Theoretical and Applied Mechanics. Beijing: Chinese Society of Theoretical and Applied Mechanics, 2017: 1530-1542 (in Chinese). | |
22 | ROMANO E. The structural dynamics analysis of the main injector LOX inlet tee and its redesign: NASA-CR-186764[R]. Washington, D.C.: NASA, 1989. |
23 | RYAN R S. A history of aerospace problems, their solutions, their lessons: NASA-TP-3653[R]. Washington, D.C.: NASA, 1996. |
24 | BROWN A. Structural dynamics of rocket engines[R]. Washington, D.C.: NASA, 2016. |
25 | GOETZ O, MONK J. Combustion device failures during space shuttle main engine development[R]. Washington, D.C.: NASA, 2005 |
26 | BENASCIUTTI D, SHERRATT F, CRISTOFORI A. Recent developments in frequency domain multi-axial fatigue analysis[J]. International Journal of Fatigue, 2016, 91: 397-413. |
27 | CARPINTERI A, SPAGNOLI A, VANTADORI S. A review of multiaxial fatigue criteria for random variable amplitude loads[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(7): 1007-1036. |
28 | MUC A. A fuzzy set approach to interlaminar cracks simulation problems[J]. International Journal of Fatigue, 2002, 24(2-4): 419-427. |
29 | THIEDE R G, RICCIUS J R, REESE S. Life prediction of rocket combustion-chamber-type thermomechanical fatigue panels[J]. Journal of Propulsion and Power, 2017, 33(6): 1529-1542. |
30 | MASUOKA T, RICCIUS J R. Life evaluation of a combustion chamber by thermomechanical fatigue panel tests based on a creep fatigue and ductile damage model[J]. International Journal of Damage Mechanics, 2020, 29(2): 226-245. |
31 | SCHWARZ W, SCHWUB S, QUERING K, et al. Life prediction of thermally highly loaded components: Modelling the damage process of a rocket combustion chamber hot wall[J]. CEAS Space Journal, 2011, 1(1): 83-97. |
32 | ASRAFF A K, APARNA R, KUMARESAN D, et al. Comparison of creep properties of four copper alloys and creep based stress analysis of a rocket engine combustion chamber[J]. Procedia Engineering, 2013, 55: 45-50. |
33 | ASRAFF A K, SUNIL S, MUTHUKUMAR R, et al. Stress analysis & life prediction of a cryogenic rocket engine thrust chamber considering low cycle fatigue, creep and thermal ratchetting[J]. Transactions of the Indian Institute of Metals, 2010, 63(2): 601-606. |
34 | BADLANI M, POROWSKI J, ODONNELL W J, et al. Development of a simplified procedure for rocket engine thrust chamber life prediction with creep: NASA-CR-165585[R]. Washington, D.C.: NASA, 1983 |
35 | JANAKI RAM G D, VENUGOPAL REDDY A, PRASAD RAO K, et al. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds[J]. Journal of Materials Processing Technology, 2005, 167(1): 73-82. |
36 | HOBBACHER A F. Recommendations for fatigue design of welded joints and components[M]. Cham: Springer International Publishing, 2016. |
37 | TENG T L, FUNG C P, CHANG P H. Effect of weld geometry and residual stresses on fatigue in butt-welded joints[J]. International Journal of Pressure Vessels and Piping, 2002, 79(7): 467-482. |
38 | BLAKEY-MILNER B, GRADL P, SNEDDEN G, et al. Metal additive manufacturing in aerospace: A review[J]. Materials & Design, 2021, 209: 110008. |
39 | FRAZIER W E. Metal additive manufacturing: A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928. |
40 | GÜNTHER J, KREWERTH D, LIPPMANN T, et al. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime[J]. International Journal of Fatigue, 2017, 94: 236-245. |
41 | ZHOU Z P, HUANG L, SHANG Y J, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing[J]. Materials & Design, 2018, 160: 1238-1249. |
42 | TANG M, PISTORIUS P C. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting[J]. International Journal of Fatigue, 2017, 94: 192-201. |
43 | SANAEI N, FATEMI A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review[J]. Progress in Materials Science, 2021, 117: 100724. |
44 | OLIVEIRA J P, SANTOS T G, MIRANDA R M. Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice[J]. Progress in Materials Science, 2020, 107: 100590. |
45 | CHAUVET E, KONTIS P, JÄGLE E A, et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron beam melting[J]. Acta Materialia, 2018, 142: 82-94. |
46 | CHEN Y, LU F G, ZHANG K, et al. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling[J]. Journal of Alloys and Compounds, 2016, 670: 312-321. |
47 | UDDIN S Z, MURR L E, TERRAZAS C A, et al. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2018, 22: 405-415. |
48 | GU D D, HAGEDORN Y C, MEINERS W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849-3860. |
49 | TAN Q Y, ZHANG J Q, SUN Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles[J]. Acta Materialia, 2020, 196: 1-16. |
50 | GONG H J, RAFI K, STARR T, et al. The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting[C]∥2013 International Solid Freeform Fabrication Symposium. Austin: University of Texas at Austin, 2013. |
51 | LU T, LIU C M, LI Z X, et al. Hot-wire arc additive manufacturing Ti-6.5Al-2Zr-1Mo-1V titanium alloy: Pore characterization, microstructural evolution, and mechanical properties[J]. Journal of Alloys and Compounds, 2020, 817: 153334. |
52 | WU B T, PAN Z X, DING D H, et al. A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement[J]. Journal of Manufacturing Processes, 2018, 35: 127-139. |
53 | AL-KETAN O, ROWSHAN R, AL-RUB R K ABU. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials[J]. Additive Manufacturing, 2018, 19: 167-183. |
54 | FU J, QU S, DING J H, et al. Comparison of the microstructure, mechanical properties and distortion of stainless steel 316L fabricated by micro and conventional laser powder bed fusion[J]. Additive Manufacturing, 2021, 44: 102067. |
55 | LI R D, LIU J H, SHI Y S, et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(9): 1025-1035. |
56 | TANG Y T, PANWISAWAS C, GHOUSSOUB J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing[J]. Acta Materialia, 2021, 202: 417-436. |
57 | PANDEY P M, VENKATA REDDY N, DHANDE S G. Improvement of surface finish by staircase machining in fused deposition modeling[J]. Journal of Materials Processing Technology, 2003, 132(1-3): 323-331. |
58 | KHAIRALLAH S A, ANDERSON A T, RUBENCHIK A, et al. Laser Powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 2016, 108: 36-45. |
59 | MERCELIS P, KRUTH J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid prototyping journal, 2006, 12(5): 254-265. |
60 | ZAEH M F, BRANNER G. Investigations on residual stresses and deformations in selective laser melting[J]. Production Engineering, 2010, 4(1): 35-45. |
61 | ALI H, GHADBEIGI H, MUMTAZ K. Processing parameter effects on residual stress and mechanical properties of selective laser melted Ti6Al4V[J]. Journal of Materials Engineering and Performance, 2018, 27(8): 4059-4068. |
62 | WANG L F, JIANG X H, ZHU Y H, et al. An approach to predict the residual stress and distortion during the selective laser melting of AlSi10Mg parts[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(9): 3535-3546. |
63 | LIU Y, YANG Y Q, WANG D. A study on the residual stress during selective laser melting (SLM) of metallic powder[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1): 647-656. |
64 | SIMSON T, EMMEL A, DWARS A, et al. Residual stress measurements on AISI 316L samples manufactured by selective laser melting[J]. Additive Manufacturing, 2017, 17: 183-189. |
65 | MERTENS R, DADBAKHSH S, VAN HUMBEECK J, et al. Application of base plate preheating during selective laser melting[J]. Procedia CIRP, 2018, 74: 5-11. |
66 | KERSTENS F, CERVONE A, GRADL P. End to end process evaluation for additively manufactured liquid rocket engine thrust chambers[J]. Acta Astronautica, 2021, 182: 454-465. |
67 | 陈纪宏, 鲍福廷, 刘旸, 等. 固体火箭发动机金属壳体结构可靠性分析研究[J]. 计算机仿真, 2014, 31(11): 33-37. |
CHEN J H, BAO F T, LIU Y, et al. Reliability analysis for solid rocket engine metal case structure[J]. Computer Simulation, 2014, 31(11): 33-37 (in Chinese). | |
68 | ZHANG Z, TENG Z J, WANG J Y, et al. Very high cycle fatigue behaviors of GH4169 superalloy at room and high temperatures[J]. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(6): 1796-1806. |
69 | WALKER K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[M]∥Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462, American Society for Testing and Materials. West Conshohocken: ASTM International, 1970: 1-14. |
70 | SMITH K N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of materials[J]. Journal of Materials, 1970, 5: 767-778. |
71 | RADAJ D. Generalised neuber concept of fictitious Notch rounding[M]∥Advanced Methods of Fatigue Assessment. Berlin, Heidelberg: Springer, 2013: 1-100. |
72 | MENEGHETTI G, LAZZARIN P. Significance of the elastic peak stress evaluated by FE analyses at the point of singularity of sharp V-notched components[J]. Fatigue & Fracture of Engineering Materials and Structures, 2007, 30(2): 95-106. |
73 | RADAJ D, SONSINO C M, FRICKE W. Recent developments in local concepts of fatigue assessment of welded joints[J]. International Journal of Fatigue, 2009, 31(1): 2-11. |
74 | MURAKAMI Y. Metal fatigue: Effects of small defects and nonmetallic inclusions[M]. 2nd ed. London: Academic Press, 2019: 64-66. |
75 | SONG L K, BAI G C, FEI C W. Probabilistic LCF life assessment for turbine discs with DC strategy-based wavelet neural network regression[J]. International Journal of Fatigue, 2019, 119: 204-219. |
76 | ZHU S P, HUANG H Z, SMITH R, et al. Bayesian framework for probabilistic low cycle fatigue life prediction and uncertainty modeling of aircraft turbine disk alloys[J]. Probabilistic Engineering Mechanics, 2013, 34: 114-122. |
77 | IRWIN G R. Analysis of stresses and strains near the end of a crack traversing a plate[J]. Journal of Applied Mechanics, 1957, 24(3): 361-364. |
78 | PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4): 528-533. |
79 | WOLF E. Fatigue crack closure under cyclic tension[J]. Engineering Fracture Mechanics, 1970, 2(1): 37-45. |
80 | ELBER W. The significance of fatigue crack closure[C]∥Damage Tolerance in Aircraft Structures Annual Meeting. West Conshohocken: ASTM International, 1971, doi: 10.1520/STP26680S . |
81 | NEWMAN J C. A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading[M] West Conshohocken: ASTM International, 1981. |
82 | CHANG T, GUO W. Effects of strain hardening and stress state on fatigue crack closure[J]. International Journal of Fatigue, 1999, 21(9): 881-888. |
83 | CHANG T, GUO W. A model for the through-thickness fatigue crack closure[J]. Engineering Fracture Mechanics, 1999, 64(1): 59-65. |
84 | 张田忠, 郭万林, 徐绯. 考虑应力状态的疲劳裂纹闭合分析[J]. 航空学报, 2001, 22(1): 24-29. |
ZHANG T Z, GUO W L, XU F. Theoretical analysis of fatigue crack closure considering stress states[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(1): 24-29 (in Chinese). | |
85 | 郭万林. 复杂环境下的三维疲劳断裂[J]. 航空学报, 2002, 23(3): 215-220. |
GUO W L. Three-dimensional fatigue fracture in complex environments[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(3): 215-220 (in Chinese). | |
86 | NEWMAN J C JR. A crack opening stress equation for fatigue crack growth[J]. International Journal of Fracture, 1984, 24(4): R131-R135. |
87 | GUO W. Three-dimensional analyses of plastic constraint for through-thickness cracked bodies[J]. Engineering Fracture Mechanics, 1999, 62(4-5): 383-407. |
88 | NEWMAN J C JR, ANNIGERI B S. Fatigue-life prediction method based on small-crack theory in an engine material[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(3): 1. |
89 | YU P S, SHE C M, GUO W L. Equivalent thickness conception for corner cracks[J]. International Journal of Solids and Structures, 2010, 47(16): 2123-2130. |
90 | YU P S, GUO W L. An equivalent thickness conception for prediction of surface fatigue crack growth life and shape evolution[J]. Engineering Fracture Mechanics, 2012, 93: 65-74. |
91 | TANAKA K, NAKAI Y. Propagation and non-propagation of short fatigue cracks at a sharp Notch[J]. Fatigue & Fracture of Engineering Materials and Structures, 1983, 6(4): 315-327. |
92 | YADOLLAHI A, MAHTABI M J, KHALILI A, et al. Fatigue life prediction of additively manufactured material: Effects of surface roughness, defect size, and shape[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(7): 1602-1614. |
93 | NEWMAN JR J C. FASTRAN-2: A fatigue crack growth structural analysis program[R]. Washington, D.C.: NASA, 1992. |
94 | MCDOWELL D L, GALL K, HORSTEMEYER M F, et al. Microstructure-based fatigue modeling of cast A356-T6 alloy[J]. Engineering Fracture Mechanics, 2003, 70(1): 49-80. |
95 | XUE Y, PASCU A, HORSTEMEYER M F, et al. Microporosity effects on cyclic plasticity and fatigue of LENS™-processed steel[J]. Acta Materialia, 2010, 58(11): 4029-4038. |
96 | WU Y T, ENRIGHT M P, MILLWATER H R. Probabilistic methods for design assessment of reliability with inspection[J]. AIAA Journal, 2002, 40: 937-946. |
97 | GUO W L. Elastoplastic three dimensional crack border field—I. Singular structure of the field[J]. Engineering Fracture Mechanics, 1993, 46(1): 93-104. |
98 | GUO W L. Elastoplastic three dimensional crack border field—II. Asymptotic solution for the field[J]. Engineering Fracture Mechanics, 1993, 46(1): 105-113. |
99 | GUO W L. Elasto-plastic three-dimensional crack border field—III. Fracture parameters[J]. Engineering Fracture Mechanics, 1995, 51(1): 51-71. |
100 | ZHU J C, GUO W, GUO W L. Surface fatigue crack growth under variable amplitude loading[J]. Engineering Fracture Mechanics, 2020, 239: 107317. |
101 | ZHU J C, XU L, GUO W L. The influence of bending loading on surface fatigue crack growth life[J]. International Journal of Fatigue, 2023, 167: 107285. |
102 | ZHANG J Q, ZHU J C, GUO W, et al. A machine learning-based approach to predict the fatigue life of three-dimensional cracked specimens[J]. International Journal of Fatigue, 2022, 159: 106808. |
103 | ZHU J, CAO J, GUO W. Three-dimensional fatigue crack growth based method for fatigue reliability of metallic materials[J]. International Journal of Fatigue, 2023, 173: 107697. |
[1] | Yulian GONG, Jianguo ZHANG, Zhigang WU, Guangyuan CHU, Xiaoduo FAN, Ying HUANG. Reliability algorithm of composite structure based on active learning basis-adaptive PC-Kriging model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 228982-228982. |
[2] | Junfei TENG, Jiahao LI, Huiyan ZHOU, Dawei WU, Haitao XU, Tiesong LIN, Yongde HUANG. Effect of TLP diffusion welding process parameters on microstructure and mechanical properties of GH5188 superalloy joint [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 429205-429205. |
[3] | Fan ZHANG, Bohan CHENG, Peng WANG, Lei DONG. A two-stage degradation model and reliability analysis related to degradation of binary load-sharing systems [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 229046-229046. |
[4] | Xiaofeng XUE, Miaoyan ZHAO, Qianyi DU, Yunwen FENG, Junling FAN, Ting JIAO. Detection reliability based on quantification of human and environmental factors [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 228859-228859. |
[5] | Yuefeng YING, Qihao CHEN, Weidong WANG, Xinyu MAO. Effect of ultrasonic vibration of welding wire on weld formation and pore in gas metal arc welding of aluminum alloy [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 428711-428711. |
[6] | Wu LIU, Yunyan WU, Wei LIU, Mingming TIAN, Tianpeng HUANG. Re-entry robust fault tolerant attitude control for RLVs considering unknown disturbances [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727787-727787. |
[7] | Xinqian ZHENG, Junying WANG, Weina HUANG, Yu FU, Ronghui CHENG, Hongyang XIONG. Uncertainty⁃based design system for aeroengines [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 27099-027099. |
[8] | Benqi SUN, Qiang YANG, Zhili SUN, Shujun LI, Hongkun MA, Ruonan WANG. A probabilistic evaluation model for configuration transformation ability of planar constrained metamorphic mechanisms [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 426843-426843. |
[9] | Fan ZHANG, Zijing SUN, Guosong XIAO, Jiachen LIU, Peng WANG. Reliability analysis for multi-phased mission of HUD system based on intuitionistic fuzzy Bayesian network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 226853-226853. |
[10] | Linkun HE, Wenchao XUE, Ran ZHANG, Huifeng LI. Guidance and control for powered descent and landing of launch vehicles: Overview and outlook [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628462-628462. |
[11] | Yan LYU, Lin LIU, Guangyong ZHANG, Lei LIANG, Xuesheng ZHENG. Reusable technology of air⁃launched launch vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628083-628083. |
[12] | Lechang YANG, Chenxing WANG. Parameter calibration and reliability analysis of an aero-engine rotor based on multi-source heterogeneous information [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 228575-228575. |
[13] | Zhi ZHANG, Han YUAN, Wanqing ZHANG. Powered deceleration guidance method based on gravity-turn analytical solutions [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628483-628483. |
[14] | Weimin BAO. A review of reusable launch vehicle technology development [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629555-629555. |
[15] | Yunwen FENG, Jiaqiang TANG, Chenghui FENG, Xianmin CHEN, Xiaofeng XUE. Reliability study of multiple load path lug based on load⁃sharing theory [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 228528-228528. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341