ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (6): 27034.doi: 10.7527/S1000-6893.2022.27034
• Reviews • Previous Articles Next Articles
Shuai HAO1,2, Tielin MA3, Yi WANG1, Jinwu XIANG1(), Hongzhong MA2, Baifeng JIANG4, Jun CAO5
Received:
2022-02-14
Revised:
2022-03-03
Accepted:
2022-03-14
Online:
2023-03-25
Published:
2022-03-22
Contact:
Jinwu XIANG
E-mail:xiangjw@buaa.edu.cn
Supported by:
CLC Number:
Shuai HAO, Tielin MA, Yi WANG, Jinwu XIANG, Hongzhong MA, Baifeng JIANG, Jun CAO. Progress and application of key technologies of SensorCraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 27034.
Table 2
Parameter characteristics of three kinds of SensorCraft[4,36-37]
设计参数 | 洛·马公司的常规布局 | 诺格公司的飞翼布局 | 波音公司的联翼布局 |
---|---|---|---|
起飞总重/kg | 42 860 | 56 700 | 60 780 |
空机重量系数 | 0.37 | 0.44 | 0.44 |
燃油重量系数 | 0.63 | 0.56 | 0.56 |
翼展/m | 56 | 62 | 50 |
机长/m | 30 | 22 | 31 |
有效载荷/kg | 2 720 | 3 170 | 4 170 |
任务区留空时间/h@km | 22@5 500 | 40@3 700 | 20@5 500 |
巡航马赫数 | 0.60 | 0.65 | 0.80 |
ISR传感器集成 | 机翼蒙皮集成雷达孔径 | 机翼嵌入传感器(360°视野) |
Table 4
Early representative conformal antenna projects[103-109]
项目名称 | 参研单位 | 研究内容 |
---|---|---|
集成传感器即结构 | 美国国防高级研究计划局/雷神公司 | 平流层飞艇集成超大型低密度相控阵雷达天线 |
多用途天线 | 美国海军/诺格公司 | 开发多功能天线,集成VHF/UHF视距、UHF卫通和GPS |
军用巡逻机低成本共形收发卫通天线 | 美国海军/诺格公司 | 开发低成本共形卫通收/发天线,可在X、Ku/Ka波段工作 |
低成本自适应共形电扫雷达 | 美国陆军/雷神公司 | 开发远程GMTI/SAR雷达,用于美国陆军的战术无人机 |
智能蒙皮结构技术演示 | 美国空军实验室 | 设计、制造和测试CLAS样件 |
射频多功能结构孔径 | 美国空军实验室 | 开发宽频通信/导航/识别和电子战的结构集成/低成本天线 |
传感器飞机共形低频段天线结构 | 诺格公司/美国空军实验室 | 制作传感器飞机所需阵列的1/2缩比演示样件 |
结构集成X波段阵列 | 波音公司/美国空军实验室 | 验证一级和二级结构性能,在微波暗室中评估射频性能 |
低频结构阵列 | 诺格公司/美国空军实验室 | 生产和测试传感器飞机共形阵列的全尺寸全约束样件 |
X波段低剖面雷达孔径 | 雷神公司/美国空军实验室 | 开发用于联合无人作战空中系统的超低剖面雷达天线 |
共形阵雷达技术 | 雷神公司/美国空军实验室 | 开发集成于机体两侧及机翼前缘的共形天线阵面 |
多功能结构与共形孔径 | 波音公司/美国空军实验室 | 针对真实机翼、机身及舱门结构,开发测试一体化天线 |
共形承载天线飞机结构 | 荷兰国家航空航天实验室 | 开发机载共形承载天线,研究变形和振动对天线的影响 |
结构功能一体化天线 | 法国国家宇航局/汤姆逊无线电公司 | 开发有源智能蒙皮天线样机 |
多功能结构/传感器和天线集成 | 德国高频物理研究所 | 开发结构集成的多功能天线,研究变形和振动对天线的影响 |
1 | CORD T J, NEWBERN S. Unmanned air vehicles: new challenges in design[C]∥ 2001 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2001: 2699-2704. |
2 | HALL J K, CLARK C S. SensorCraft mission simulation study: AFRL-VA-WP-TP-2002-314[R]. Dayton: Air Force Research Lab Wright-Patterson AFB OH Air Vehicles Directorate, 2002. |
3 | JOHNSON F. Sensor Craft—Tomorrow’s eyes and ears of the warfighter[C]∥ AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 2001. |
4 | TILMANN C P. Emerging aerodynamic technologies for high-altitude long-endurance SensorCraft UAVs[C]∥ Proceedings for Aerodynamic Issues of Unmanned Air Vehicles. Dayton: Air Force Research Lab Wright-Patterson AFB OH Air Vehicles Directorate, 2002: 1-24. |
5 | GENELLO G J, BALDYGO W J, CALLAHAN M J. Modeling and simulation for Sensor Craft multi-mission radar[C]∥ 2001 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2001: 741-748. |
6 | MALLWOOD B, CANFIELD R, TERZUOLI A. Structurally integrated antennas on a joined-wing aircraft[C]∥ 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003. |
7 | CHAMBERS J R. Innovation in flight: Research of the NASA langley research center on revolutionary advanced concepts for aeronautics[M]. Washington, D.C.: NASA, 2007: 1-20. |
8 | HOPKINS M, TUSS J, LOCKYER A, et al. Smart skin conformal load-bearing antenna and other smart structures developments[C]∥ 38th Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 1997. |
9 | BARTLEY-CHO J, LOCKYER A, ALT K, et al. Development and testing of a conformal load-bearing smart skin antenna structure[C]∥ 40th Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston: AIAA, 1999. |
10 | SIPUS Z, SKOKIC S, BURUM N. Analysis of conformal stacked-patch arrays: SPC 04-3050[R]. Zagreb: Zagreb University, 2005. |
11 | SCHWARTZ J, CANFIELD R A, BLAIR M. Aero-structural coupling and sensitivity of a joined-wing SensorCraft[C]∥ 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003: 1606-1613. |
12 | BANKS D, BERDEN M, BARON B, et al. Structurally integrated X-band array development: RTO-MP-AVT-141[R]. Seattle: Boeing Company, 2006. |
13 | HENDERSON J, MARTIN C, KUDVA J. Sensitivity of optimized structures to constraints and performance requirements for the SensorCraft ISR platform[C]∥ 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003. |
14 | REICH G W, RAVEH D E, ZINK P S. Application of active-aeroelastic-wing technology to a joined-wing SensorCraft[J]. Journal of Aircraft, 2004, 41(3): 594-602. |
15 | SULEMAN A. Research and development of a scaled joined-wing flight vehicle: GRANT 05-3076[R]. Lisbon: Instituto Superior Tecnico Lisbon, 2005. |
16 | JOHNSON K S. Unmanned aircraft systems roadmap 2005-2030: 61280700[R]. Washington, D.C.: Office of the Secretary of Defence (USA), 2005. |
17 | NANGIA R, PALMER M. Joined wing configuration for high speeds—A first stage aerodynamic study[C]∥ 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
18 | COOPER J E. Structural design and analysis of an aeroelastic tailoring and passive load alleviation concept for a Sensor Craft: GRANT 05-3006[R]. Manchester: Manchester University, 2007. |
19 | VIO G, COOPER J. Optimisation of composite SensorCraft structures for gust alleviation[C]∥ 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008. |
20 | CALLUS P J. Novel concepts for conformal load-bearing antenna structure: DSTO-TR-2096[R]. Victoria: Defence Science and Technology Organisation Victoria (Australia) Air Vehicles DIV, 2008. |
21 | CAKIROGLU B. Construction and testing of broadband high impedance ground planes (HIGPS) for surface mount antennas: AFIT/GE/ENG/08-02[R]. Dayton: Air Force Inst of Tech Wright-Patterson AFB OH School of Engineering and Management, 2008. |
22 | CASSEN J, WATERMAN T G. Radome for endfire antenna arrays: US7583238[P]. 2009-09-01. |
23 | LINDERMAN R. Air Force science & technology issues & opportunities regarding high performance embedded computing[C]∥ 13th Annual Workshop on High Performance Embedded Computing. Lexington: Air Force Research Lab Rome Ny Information Directorate, 2009: 1-40. |
24 | GAL-OR B. Editorial on future jet technologies[J]. International Journal of Turbo & Jet-Engines, 2014, 31(4): 197-198. |
25 | BRONK J. Disruptive trends in long-range precision strike, ISR, and defensive systems[J]. The Nonproliferation Review, 2020, 27(1-3): 39-47. |
26 | GUNZINGER M, REHBERG C, COHN J, et al. An air force for an era of great power competition[M]. Wash-ington, D.C.: Center for Strategic and Budgetary As-sessments, 2019: 7-165. |
27 | BLAIR M B, CANFIELD R. A joined-wing structural weight modeling study[C]∥ 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002. |
28 | HUNTEN K, BLAIR M. The application of the MISTC framework to structural design optimization[C]∥ 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005. |
29 | BLAIR M. Air vehicle enviroment in C++: A computational design environment for conceptual innovations[J]. Journal of Aerospace Computing, Information, and Communication, 2010, 7(3): 85-117. |
30 | RASMUSSEN C C, CANFIELD R A, BLAIR M. Joined-wing Sensor-Craft configuration design[J]. Journal of Aircraft, 2006, 43(5): 1470-1478. |
31 | NEIDHOEFER J, RYAN J, LEAHY B, et al. Cooperative multi-disciplinary design of integral load bearing antennas in small UAVs[C]∥ 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
32 | 张芳, 徐含乐, 任武. 特种太阳能飞机总体参数设计方法研究[J]. 科学技术与工程, 2012, 12(24): 6245-6251. |
ZHANG F, XU H L, REN W. Research of Special Solar-powered Aircraft Conceptual Parameters design method[J]. Science Technology and Engineering, 2012, 12(24): 6245-6251 (in Chinese). | |
33 | 任武, 周洲, 王正平. 高空长航时无人预警机气动及电磁特性研究[J]. 科学技术与工程, 2012, 12(4): 848-851, 856. |
REN W, ZHOU Z, WANG Z P. Aerodynamic and electromagnetic characteristics research of high-altitude long-endurance early warning unmanned aerial vehicles[J]. Science Technology and Engineering, 2012, 12(4): 848-851, 856 (in Chinese). | |
34 | HE C, JIA Y H, MA D L, et al. Integrated optimization approach for aerodynamic, structural, and embedded antenna design of joined-wing SensorCraft[J]. IEEE Access, 2020, 8: 138999-139012. |
35 | CALLUS P J. Conformal load-bearing antenna structure for Australian Defence Force aircraft: DSTO-TR-1963[R]. Melboume: Defence Science and Technology Organisation Victoria (Australia) Air Vehicles DIV, 2007. |
36 | NANGIA R K. Configuration studies supporting design/assessment of Sensor Craft: SPC 01-4087[R]. Bristol: Nangia Aero Research Associates Bristol, 2003. |
37 | ROBERTS JR R W. Sensor-Craft analytical certification[D]. Dayton: Air Force Inst of Tech Wright-Patterson AFB OH School of Engineering and Management, 2003: 22-36. |
38 | MARISARLA S, NARAYANAN V, GHIA U, et al. Prediction of structural behavior of joined-wing configuration of high altitude long endurance (HALE) aircraft based on the sensor-craft model[C]∥ 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
39 | BLAIR M, CANFIELD R A, ROBERTS R W. Joined-wing aeroelastic design with geometric nonlinearity[J]. Journal of Aircraft, 2005, 42(4): 832-848. |
40 | ROBINSON J. Structural testing and analysis of a joined wing technology demonstrator: AFRL-VA-WP-TR-2004-3048[R]. Dayton: Defense Technical Information Center, 2004. |
41 | BLAIR M, ROBINSON J, MCCLELLAND W A, et al. A joined-wing flight experiment: AFRL-RB-WP-TR-2008-3101[R]. Dayton: Defense Technical Information Center, 2008. |
42 | ADAMS B J. Structural stability of a joined-wing SensorCraft[D]. Dayton: Air Force Institute of Technology, 2007: 22-23. |
43 | LUCIA D. The SensorCraft configurations: A non-linear AeroServoElastic challenge for aviation[C]∥ 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005. |
44 | COOPER J E. Experimental validation of an aeroelastically scaled SensorCraft model: GRANT 07-3111[R]. Liverpool: Liverpool University, 2009. |
45 | AARONS T, CANFIELD R, WOOLSEY C, et al. Design for flight test of a scaled joined wing SensorCraft[C]∥ 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011. |
46 | RICHARDS J, GARNAND-ROYO J S, SULEMAN A, et al. Design and evaluation of aeroelastically tuned joined-wing SensorCraft flight test article[C]∥ 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013. |
47 | VARTIO E, SHIMKO A, TILMANN C, et al. Structural modal control and gust load alleviation for a SensorCraft concept[C]∥ 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005. |
48 | LOVE M, ZINK P, WIESELMANN P, et al. Body freedom flutter of high aspect ratio flying wings[C]∥ 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005. |
49 | SILVA W, VARTIO E, SHIMKO A, et al. Development of aeroservoelastic analytical models and gust load alleviation control laws of a SensorCraft wind-tunnel model using measured data[C]∥ 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006. |
50 | VARTIO E, SHAW E, VETTER T. Gust load alleviation flight control system design for a SensorCraft vehicle[C]∥ 26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008. |
51 | MANGALAM A, DAVIS M. Ground/flight correlation of aerodynamic loads with structural response[C]∥ 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
52 | GUO S J, SENSBURG O. Passive gust alleviation for a flying wing aircraft: AFRL-AFOSR-UK-TR-2013-0008[R]. Cranfield: Cranfield University, 2013. |
53 | GUO S J, SENSBURG O. Wind tunnel model and test to evaluate the effectiveness of a passive gust alleviation device for a flying wing aircraft: AFRL-AFOSR-UK-TR-2016-0025[R]. Cranfield: Cranfield University, 2016. |
54 | SUH P M, CHIN A W, MAVRIS D N. Virtual deformation control of the X-56A model with simulated fiber optic sensors: DFRC-E-DAA-TN10283[R]. Washington, D.C.: NASA, 2014. |
55 | WARWICK G. NASA’s X-56 Demos Flutter Suppression Flexible Wing[J]. Aviation Week & Space Technology, 2018, 22: 180. |
56 | OUELLETTE J. Active structural control for aircraft efficiency with the X-56A aircraft: AFRC-E-DAA-TN27228. Washington, D.C.: NASA, 2015. |
57 | YERLY E T, DELUCA A, JOO J J. Roll control evaluation of the X-56A flying wing aircraft using active camber control compared to conventional ailerons using vortex lattice theory[C]∥ 34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016. |
58 | GRAUER J A, BOUCHER M. Aeroelastic modeling of X-56A stiff-wing configuration flight test data[C]∥ AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2017. |
59 | CESNIK C, SU W H. Nonlinear aeroelastic modeling and analysis of fully flexible aircraft[C]∥ 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005. |
60 | CRAVEY R L, VEDELER E, GOINS L, et al. Structurally integrated antenna concepts for HALE UAVs: TM-2006-214513[R]. Reston: AIAA, 2006. |
61 | 孙俊磊, 王和平, 周洲, 等. 基于天线安装的菱形翼无人机翼型优化设计[J]. 航空学报, 2017, 38(11): 121072. |
SUN J L, WANG H P, ZHOU Z, et al. Aerodynamic optimization design of diamond-wing configuration UAV airfoil based on radar antenna installation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 121072 (in Chinese). | |
62 | 孙俊磊. 菱形翼布局飞机总体气动外形的研究与应用[D]. 西安: 西北工业大学, 2018: 207-209. |
SUN J L. Research and application of the overall aerodynamic shape of the diamond joined-wing configuration UAV[D]. Xi’an: Northwestern Polytechnical University, 2018: 207-209 (in Chinese). | |
63 | 许进林. 传感器无人机的机翼颤振抑制研究[D]. 南京: 南京航空航天大学, 2010: 72-74. |
XU J L. Research of the airfoil’s flutter suppression for sensor unmanned aerial vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 72-74 (in Chinese). | |
64 | 晨枫. 预警机和无人机之双剑合璧——谈谈有人与无人预警机的各自角色[J]. 航空知识, 2022(9): 3. |
CHEN F. Combination of AWACS and UAVs—On the respective roles of manned and unmanned AWACS[J]. Aerospace Knowledge, 2022(9): 3 (in Chinese). | |
65 | NANGIA R. Towards designing novel high altitude joined-wing sensor-craft (HALE-UAV)[C]∥ AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003. |
66 | NANGIA R, PALMER M, TILMANN C. Unconventional high aspect ratio joined-wing aircraft with aft- and forward-swept wing-tips[C]∥ 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
67 | NANGIA R, PALMER M, TILMANN C. Unconventional high aspect ratio joined-wing aircraft incorporating laminar flow[C]∥ 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003. |
68 | NAMGOONG H, CROSSLEY W A, LYRINTZIS A S. Aerodynamic optimization of a morphing airfoil using energy as an objective[J]. AIAA Journal, 2007, 45(9): 2113-2124. |
69 | NAMGOONG H, CROSSLEY W A, LYRINTZIS A S. Morphing airfoil design for minimum drag and actuation energy including aerodynamic work[J]. Journal of Aircraft, 2012, 49(4): 981-990. |
70 | DRAKE A, SOLOMON W. Flight testing of a 30-degree sweep laminar flow wing for a high-altitude long-endurance aircraft[C]∥ 28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010. |
71 | SMITH B, GLEZER A, SMITH B, et al. Vectoring and small-scale motions effected in free shear flows using synthetic jet actuators[C]∥ 35th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1997. |
72 | YOU D. Active control of flow separation over an airfoil using synthetic jets[J]. Journal of Fluids and Structures, 2008, 24(8): 1349-1357. |
73 | 徐国亮, 符松. 可压缩横流失稳及其控制[J]. 力学进展, 2012, 42(3): 262-273. |
XU G L, FU S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3): 262-273 (in Chinese). | |
74 | 吴光辉, 陈迎春. 大型客机减阻机理及方法研究[M]. 上海: 上海交通大学出版社, 2018: 397-409. |
WU G H, CHEN Y C. Investigation on the principles and methods of drag reduction for civil aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2018: 397-409 (in Chinese). | |
75 | CARPENTER A, SARIC W, REED H. Laminar flow control on a swept wing with distributed roughness[C]∥ 26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008. |
76 | REICH G W, BOWMAN J C, SANDERS B. Large-area aerodynamic control for high-altitude long-endurance sensor platforms[J]. Journal of Aircraft, 2005, 42(1): 237-244. |
77 | YOUNGREN H. Multi-point design and optimization of an natural laminar flow airfoil for a mission adaptive compliant wing[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
78 | SMALLWOOD B P, TERZUOLI A J, CANFIELD R A. Structurally integrated antennas for remote sensing[C]∥ 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings. Piscataway: IEEE Press, 2003: 4252-4254. |
79 | BURRIS P, DEMPSTER J. Flight testing structural performance of the LAMS flight control system[C]∥ 2nd Simulation and Support Conference. Reston: AIAA, 1968. |
80 | PAYNE B W. Designing a load alleviation system for a modern civil aircraft[C]∥ 15th Congress of the International Council of Aeronautical Sciences. London: ICAS, 1986: 283-291. |
81 | YAGIL L, RAVEH D E, IDAN M. Elastic deformations control of highly flexible aircraft in trimmed flight and gust encounter[C]∥ 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2017. |
82 | FONTE F, TOFFOL F, RICCI S. Design of a wing tip device for active maneuver and gust load alleviation[C]∥ 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018. |
83 | CASTRICHINI A, SIDDARAMAIAH V H, CALDERON D E, et al. Nonlinear folding wing tips for gust loads alleviation[C]∥ 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2016. |
84 | Scott R C, Castelluccio M A, Coulson D A, et al. Aeroservoelastic wind-tunnel tests of a free-flying, joined-wing SensorCraft model for gust load alleviation[C]∥ 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011. |
85 | SCOTT M, ENKE A, FLANAGAN J. SensorCraft free-flying aeroservoelastic model: Design and fabrication[C]∥ 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011. |
86 | 杨阳. 大展弦比柔性飞机阵风减缓及飞行验证[D]. 北京: 北京航空航天大学, 2020: 69-74. |
YANG Y. Gust alleviation and flight test validation of high-aspect-ratio flexible aircraft[D]. Beijing: Beihang University, 2020: 69-74 (in Chinese). | |
87 | ROESCH P, HARLAN R. A passive gust alleviation system for light aircraft[C]∥ Mechanics and Control of Flight Conference. Reston: AIAA, 1974. |
88 | PERRON S G, DRELA M. Passive gust load alleviation through bend-twist coupling of composite beams on typical commercial airplane wings[C]∥ 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013. |
89 | COOPER J, MILLER S, SENSBURG O, et al. Optimization of a scaled SensorCraft model with passive gust alleviation[C]∥ 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008. |
90 | COOPER J E, CHEKKAL I, CHEUNG R C M, et al. Design of a morphing wingtip[J]. Journal of Aircraft, 2015, 52(5): 1394-1403. |
91 | 李道春, 向锦武, 张志飞, 等. 一种主动和被动相结合的固定翼飞机阵风减缓的控制方法: CN108516101B[P]. 2020-02-14. |
LI D C, XIANG J W, ZHANG Z F, et al. Active and passive combined fixed-wing aircraft gust alleviation control method: CN108516101B[P]. 2020-02-14 (in Chinese). | |
92 | RIZK M S A S, MORRIS G, CLIFTON M P. Projected aperture synthesis method for the design of conformal array antennas[C]∥ 4th International Conference on Antennas and Propagation (ICAP 85). Piscataway: IEEE Press, 1985: 48-52. |
93 | BUCCI O M, D’ELIA G, MAZZARELLA G, et al. Antenna pattern synthesis: A new general approach[J]. Proceedings of the IEEE, 1994, 82(3): 358-371. |
94 | SUREAU J C, KEEPING K. Sidelobe control in cylindrical arrays[J]. IEEE Transactions on Antennas and Propagation, 1982, 30(5): 1027-1031. |
95 | GREDA L A, KOENEN C, BASTA N, et al. SEQAR: An efficient MATLAB tool for design and analysis of conformal antenna arrays [EM programmer’s notebook][J]. IEEE Antennas and Propagation Magazine, 2014, 56(4): 178-187. |
96 | HU W Q, WANG X S, LI Y Z, et al. Synthesis of conformal arrays with matched dual-polarized patterns[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1341-1344. |
97 | BUTTAZZONI G, VESCOVO R. Deterministic and stochastic approach to the synthesis of conformal arrays for SAR applications[C]∥ 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA). Piscataway: IEEE Press, 2013: 520-523. |
98 | FERREIRA J A, ARES F. Pattern synthesis of conformal arrays by the simulated annealing technique[J]. Electronics Letters, 1997, 33(14): 1187-1189. |
99 | 赵菲. 共形相控阵天线分析综合技术与实验研究[D]. 长沙: 国防科学技术大学, 2012: 161-170. |
ZHAO F. Analysis and synthesis study of conformal phased antenna array and experiment[D]. Changsha: National University of Defense Technology, 2012: 161-170 (in Chinese). | |
100 | 刘燕. 入侵杂草优化算法在阵列天线综合中的应用[D]. 西安: 西安电子科技大学, 2015: 90-97. |
LIU Y. Invasive weed optimization algorithm for the synthesis of antenna arrays[D]. Xi’an: Xidian University, 2015: 90-97 (in Chinese). | |
101 | TUSS J, LOCKYER A, ALT K, et al. Conformal loadbearing antenna structure[C]∥ 37th Structure, Structural Dynamics and Materials Conference. Reston: AIAA, 1996. |
102 | LOCKYER A J, ALT K H, KINSLOW R W, et al. Development of a structurally integrated conformal load-bearing multifunction antenna: Overview of the Air Force Smart Skin Structures Technology Demonstration Program[C]∥ 1996 Symposium on Smart Structures and Materials. San Diego: International Society for Optics and Photonics, 1996, 2722: 55-64. |
103 | LOCKYER A J, ALT K H, COUGHLIN D P, et al. Design and development of a conformal load-bearing smart skin antenna: Overview of the AFRL Smart Skin Structures Technology Demonstration (S3TD)[J]. Proceedings of SPIE—The International Society for Optical Engineering, 1999, 3674: 410-424. |
104 | ALT K H, LOCKYER A J, COUGHLIN D P, et al. Overview of the DoD’s rf multifunction structural aperture (MUSTRAP) program[J]. Proceedings of SPIE—The International Society for Optical Engineering, 2001, 4334: 137-146. |
105 | DOUGLAS B. Conformal consensus[J]. Aviation Week & Space Technology, 2006, 165(17): 51. |
106 | BERDEN M J, MCCARVILLE D A. Structurally integrated X-band antenna large scale component wing test[C]∥ 2007 International Symposium Proceedings of the Society for the Advancement of Material and Process Engineering. Covina: SAMPE, 2007: 1-15. |
107 | URCIA M, BANKS D. Structurally integrated phased arrays[C]∥ 2011 Aerospace Conference. Piscataway: IEEE Press, 2011: 1-8. |
108 | KNOTT P. Antenna design and beamforming for a conformal antenna array demonstrator[C]∥ 2006 IEEE Aerospace Conference. Piscataway: IEEE Press, 2006: 9109921. |
109 | JOSEFSSON L, PERSSON P. Conformal array antenna theory and design[M]. New York: Wiley, 2006: 1-15. |
110 | ALBERTSON N J, CANFIELD R A. Electromagnetic modeling of large phased arrays of structurally embedded waveguides[C]∥ 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2017. |
111 | SCHIPPERS H, VERPOORTE J. Overview and main achievements of the ACASIAS project[C]∥ Schippers 2020 Overview AM. Marknesse: NLR, 2020: 1-2. |
112 | BAEK S M, LIM S J, KO M G, et al. Structural design, fabrication and static testing of smart composite skin structure: Conformal load-bearing SATCOM array antenna structure (CLSAAS)[J]. International Journal of Aeronautical and Space Sciences, 2020, 21(1): 50-62. |
113 | ZHOU J Z, LI H T, KANG L, et al. Design, fabrication, and testing of active skin antenna with 3D printing array framework[J]. International Journal of Antennas and Propagation, 2017(4): 7516323. |
114 | PENG J J, QU S W, XIA M Y, et al. Wide-scanning conformal phased array antenna for UAV radar based on polyimide film[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(9): 1581-1585. |
115 | HE Q Q, DING S, XING C, et al. Research on structurally integrated phased array for wireless communications[J]. IEEE Access, 8: 52359-52369. |
116 | BAEK S M, KO M G, KIM M S, et al. Structural design of conformal load-bearing array antenna structure (CLAAS)[J]. Advanced Composite Materials, 2017, 26(S1): 29-42. |
117 | 潘兴琳. 基于光纤光栅的结构变形测量系统研究[D]. 西安: 西安电子科技大学, 2018: 1-2. |
PAN X L. Development of deformation measurement system based on fiber bragg grating[D]. Xi’an: Xidian University, 2018: 1-2 (in Chinese). | |
118 | BARTLEY-CHO J, WANG D, KUDVA J. Shape estimation of deforming structures[C]∥ 19th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2001. |
119 | JIANG G W, FU S H, CHAO Z C, et al. Pose-relay videometrics based ship deformation measurement system and sea trials[J]. Chinese Science Bulletin, 2011, 56(1): 113-118. |
120 | DERKEVORKIAN A, MASRI S F, ALVARENGA J, et al. Strain-based deformation shape-estimation algorithm for control and monitoring applications[J]. AIAA Journal, 2013, 51(9): 2231-2240. |
121 | DEMOULIN Q, LEFEBVRE-ALBARET F, BASARAB A, et al. A new flexible photogrammetry instrumentation for estimating wing deformation in Airbus[C]∥ The European Test and Telemetry Conference (ETTC2020). Nuremberg: AMA Service GmbH, 2020: 148-156. |
122 | SCHIPPERS H, VAN TONGEREN J H, KNOTT P, et al. Vibrating antennas and compensation techniques research in NATO/RTO/SET 087/RTG 50[C]∥ 2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-13. |
123 | VAN TONGEREN J H, VAN ES J J, SCHIPPERS H, et al. Antenna arrays for in-flight measurement of deformed shapes[C]∥ Proceedings of ISMA 2014. Leuven: ISMA, 2014: 1135-1147. |
124 | PETER W M. A new twist in flight research: The F-18 active aeroelastic wing project[M]. Washington, D.C.: NASA, 2013: 35-38. |
125 | 裴晓增, 娄小平, 孙广开, 等. 浮空器柔性复合蒙皮形变光纤光栅传感实验研究[J]. 光学技术, 2020, 46(1): 76-82. |
PEI X Z, LOU X P, SUN G K, et al. Experimental study on fiber Bragg grating sensing of flexible composite skin-shaped aerostat[J]. Optical Technique, 2020, 46(1): 76-82 (in Chinese). | |
126 | MILLER E. Aerostructures research at NASA Armstrong flight research center: DFRC-E-DAA-TN28392[R]. Washington, D.C.: NASA, 2015. |
127 | CHIN A W, TRUONG S, SPIVEY N. X-56A structural dynamics ground testing overview and lessons learned[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
128 | SHIN H S, CASTANO L M, HUMBERT J S, et al. Sensing skin for detecting wing deformation with embedded soft strain sensors[C]∥ 2016 IEEE Sensors. Piscataway: IEEE Press, 2016: 1-3. |
129 | FOSS G C, HAUGSE E D. Using modal test results to develop strain to displacement transformations[C]∥ Proceedings of SPIE—The International Society for Optical Engineering. Bellingham: SPIE, 1995: 112-115. |
130 | 南荣昌, 周金柱, 唐宝富, 等. 机翼蒙皮天线的形变重构方法和实验[J]. 电子机械工程, 2020, 36(5): 1-6, 54. |
NAN R C, ZHOU J Z, TANG B F, et al. Deformation reconstruction method and experiment of wing skin antenna[J]. Electro-Mechanical Engineering, 2020, 36(5): 1-6, 54 (in Chinese). | |
131 | KO W, RICHARDS W, TRAN V T. Displacement theories for in-flight deformed shape predictions of aerospace structures: NASA/TP-2007-214612[R]. Washington, D.C.: NASA, 2007. |
132 | KO W, FLEISCHER V. Methods for in-flight wing shape predictions of highly flexible unmanned aerial vehicles: Formulation of Ko displacement theory: NASA/TP-2010-214656[R]. Washington, D.C.: NASA, 2010. |
133 | PAK C G. Wing shape sensing from measured strain[J]. AIAA Journal, 2016, 54(3): 1068-1077. |
134 | TESSLER A, SPANGLER J L. A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(2-5): 327-339. |
135 | PAPA U, RUSSO S, LAMBOGLIA A, et al. Health structure monitoring for the design of an innovative UAS fixed wing through inverse finite element method (iFEM)[J]. Aerospace Science and Technology, 2017, 69: 439-448. |
136 | 张科, 袁慎芳, 任元强, 等. 基于逆向有限元法的变形机翼鱼骨的变形重构[J]. 航空学报, 2020, 41(8): 223617. |
ZHANG K, YUAN S F, REN Y Q, et al. Shape reconstruction of self-adaptive morphing wings’ fishbone based on inverse finite element method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 223617 (in Chinese). | |
137 | GLASER R, CACCESE V, SHAHINPOOR M. Shape monitoring of a beam structure from measured strain or curvature[J]. Experimental Mechanics, 2012, 52(6): 591-606. |
138 | 何凯. 柔性结构分布式光纤形态感知与三维重构技术研究[D]. 南京: 南京航空航天大学, 2018: 72-74. |
HE K. Research on morphology perception and 3D reconstruction of flexible structure based on distributed optical fiber sensor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 72-74 (in Chinese). | |
139 | MATHIA K, PRIDDY K. Real-time geometrical approximation of flexible structures using neural networks[C]∥ 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century. Piscataway: IEEE Press, 1995: 2099-2102. |
140 | FENG S Y, BAO H, PAN X L. A fuzzy network method for the airfoil long baseline antenna deformation measurement[C]∥ Fifth Asia International Symposium on Mechatronics (AISM 2015). Hertfordshire: Institution of Engineering and Technology, 2015: 1-6. |
141 | ALGERMISSEN S, MONNER H P, KNOTT P, et al. Closed-loop subspace identification for vibration control of structure integrated antenna arrays[C]∥ 2011 Aerospace Conference. Piscataway: IEEE Press, 2011: 1-12. |
142 | 胡乃岗, 保宏, 连培园, 等. 大型相控阵天线结构与调整机构一体化设计[J]. 机械工程学报, 2015, 51(1): 196-202. |
HU N G, BAO H, LIAN P Y, et al. Synthetic design of structure and adjustment mechanism of large phased array antennas[J]. Journal of Mechanical Engineering, 2015, 51(1): 196-202 (in Chinese). | |
143 | SCHIPPERS H, VAN TONGEREN J H, VOS G. Development of smart antennas on vibrating structures of aerospace platforms of conformal antennas on aircraft structures[C]∥ Multifunctional Structures/Integration of Sensors and Antennas. Piscataway: IEEE Press, 2006: 2-5. |
144 | KNOTT P. Deformation and vibration of conformal antenna arrays and compensation techniques: RTO-MP-AVT-141[R]. Waterberg: Fgan-Fhr Research Inst for High Frequency Physics and Radar Techniques Wachtberg, 2006. |
145 | TSAO J. Adaptive phase compensation for distorted phased array by minimum sidelobe response criteria[C]∥International Symposium on Antennas and Propagation Society, Merging Technologies for the 90’s. Piscataway: IEEE Press, 1990: 1466-1469. |
146 | STEYSKAL M, MAILLOUX R J. Generalization of a phased array error correction method[C]∥ IEEE Antennas and Propagation Society International Symposium. Piscataway: IEEE Press, 1996: 506-509. |
147 | 刘双荣. 面向服役环境的有源相控阵天线结构补偿方法研究[D]. 西安: 西安电子科技大学, 2019: 83-87. |
LIU S R. The service-environment-oriented mechanical and structural compensation of active phased array antenna(APAA)[D]. Xi’an: Xidian University, 2019: 83-87 (in Chinese). |
[1] | Dingchong LYU, Shoujun ZHAO, Si ZENG, Jian FU, Xintong HU, Huixiang LIU, Kefei MIAO, Yongling FU. Key technologies and challenges of high⁃performance servo⁃motor⁃pumps [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 630225-630225. |
[2] | Weihong ZHANG, Han ZHOU, Shaoying LI, Jihong ZHU, Lu ZHOU. Material⁃structure integrated design for high⁃performance aerospace thin⁃walled component [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 627428-627428. |
[3] | Yuanyuan TU, Dayi WANG, Xiangyan ZHANG, Jiaxing LI, Xiaofeng HUANG. Reconfigurability and autonomous reconfiguration methods of spacecraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628855-628855. |
[4] | Yulin DING, Zhonghua HAN, Jianling QIAO, Han NIE, Wenping SONG, Bifeng SONG. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626310-626310. |
[5] | Yongzhou LI, Di SUN, Renhua WANG, Kunyuan ZHANG. Design of inward turning inlet with controlled Mach number under non-uniform inflow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 127857-127857. |
[6] | WANG Zhixiang, LEI Yongjun, DUAN Jingbo, OUYANG Xing, ZHANG Dapeng, WANG Jie. Multi-region integrated design and optimization of concentrated-force diffusion component in heavy-lift launch vehicle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 225135-225135. |
[7] | HE Cheng, MA Dongli, JIA Yuhong, YANG Muqing, CHEN Gang. Multi-objective optimization design for joined-wing SensorCraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 224761-224761. |
[8] | SHI Zeying, YE Dong, PENG Zihan, XIE Han, WANG Hongyang, JIANG Yu, HUANG Yongan. Research progress on novel manufacturing approaches of conformal antenna for aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524812-524812. |
[9] | ZHANG Wenhao, LIU Jun, DING Feng. Integrated design method of inward turning inlet/Von Karman waverider [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 123502-123502. |
[10] | JIANG Yongsong, ZHENG Wentao, ZHAO Hang, YANG Mingsui, WANG Yongmei. Low noise design of fan outlet guide vane, part Ⅰ: Method and optimization [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(10): 122955-122955. |
[11] | ZHENG Wentao, JIANG Yongsong, ZHAO Hang, PAN Ruochi, ZHAO Yong. Low noise design of fan outlet guide vane, part Ⅱ: Numerical verifications [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(10): 122956-122956. |
[12] | SHEN Zhengyang, CHEN Xiaoming, HUANG Lingcai. Challenges for aircraft design due to special mission models of large-scale amphibious aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522400-522400. |
[13] | WANG Rong, ZHANG Hongjun, WANG Guidong, CHEN Guangqiang, BAI Peng, ZHANG Zhenming, LI Xiaodong, FU Jianming. Multidisciplinary integrated design optimization for an airbreathing air-to-air missile shape [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(1): 207-215. |
[14] | LI Shu, WANG Li, WU Shuo, SHEN Dong, HUANG Rui, WANG Qiang. Analysis of high temperature nozzle exhaust flow towards aircraft-engine integrated design [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(1): 364-370. |
[15] | LI Yongzhou, ZHANG Kunyuan. Integrated design of forebody and inlet based on external and internal conical basic flow field with controlled Mach number distribution surface [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(1): 289-301. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341