ACTA AERONAUTICAET ASTRONAUTICA SINICA
Received:
2022-11-29
Revised:
2023-03-17
Online:
2023-03-21
Published:
2023-03-21
Contact:
Yi-Quan WU
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: https://hkxb.buaa.edu.cn/EN/10.7527/S1000-6893.2023.28334
[1] 李玺,查宇飞,张天柱, 等. 深度学习的目标跟踪算法综述[J]. 中国图象图形学报, 2019, 24(12): 2057-2080. [2] ELHOSENY M. Multi-object detection and tracking (MODT) machine learning model for real-time video surveillance systems[J]. Circuits, Systems, and Signal Processing, 2020, 39(2): 611-630. [3] 徐芳,刘晶红,孙辉,等.光学遥感图像海面船舶目标检测技术进展[J]. 光学精密工程, 2021, 29(04): 916-931. [4] 江波,屈若锟,李彦冬,等.基于深度学习的无人机航拍目标检测研究综述[J].航空学报,2021,42(04):137-151. [5] AMMAR A, KOUBAA A, AHMED M, et al. Vehicle detection from aerial images using deep learning: A comparative study[J]. Electronics, 2021, 10(7): 820. [6] YAO H, QIN R, CHEN X. Unmanned aerial vehicle for remote sensing applications - a review[J]. Remote Sens-ing, 2019, 11(12): 1443. [7] RAVINDRAN R, SANTORA M J, JAMALI M M. Multi-object detection and tracking, based on DNN, for autonomous vehicles: A review[J]. IEEE Sensors Journal, 2020, 21(5): 5668-5677. [8] 葛宝义,左宪章,胡永江. 视觉目标跟踪方法研究综述[J]. 中国图象图形学报, 2018, 23(08): 1091-1107. [9] BOURAYA S, BELANGOUR A. Approaches to video real time multi-object tracking and object detection: A survey[C]//2021 12th International Symposium on Image and Signal Processing and Analysis. Piscataway: IEEE Press, 2021: 145-151. [10] PAL S K, PRAMANIK A, MAITI J, et al. Deep learning in multi-object detection and tracking: state of the art[J]. Applied Intelligence, 2021, 51(9): 6400-6429. [11] CIAPARRONE G, SáNCHEZ F L, TABIK S, et al. Deep learning in video multi-object tracking: A sur-vey[J]. Neurocomputing, 2020, 381: 61-88. [12] RANGESH A, TRIVEDI M M. No blind spots: full-surround multi-object tracking for autonomous vehicles using cameras and lidars[J]. IEEE Transactions on Intel-ligent Vehicles, 2019, 4(4): 588-599. [13] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and se-mantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587. [14] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448. [15] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015(28): 1-9. [16] CAI Z, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]//2018 IEEE Con-ference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 6154-6162. [17] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//2016 European Conference on Computer Vision. Springer, Cham, 2016: 21-37. [18] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detec-tion[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788. [19] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 7263-7271. [20] REDMON J, FARHADI A. YOLO V3: An incremental improvement[DB/OL]. arXiv preprint:1804.02767, 2018. [21] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLO V4: Optimal speed and accuracy of object detection [DB/OL]. arXiv preprint: 2004.10934, 2020. [22] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLO V7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[DB/OL]. arXiv pre-print:2207.02696, 2022. [23] DUAN K, BAI S, XIE L, et al. Centernet: keypoint triplets for object detection[C]//2019 IEEE/CVF Inter-national Conference on Computer Vision. Piscataway: IEEE Press, 2019: 6569-6578. [24] CIAPARRONE G, SáNCHEZ F L, TABIK S, et al. Deep learning in video multi-object tracking: A sur-vey[J]. Neurocomputing, 2020(381): 61-88. [25] AYALEW A, POOJA D. A review on object detection from unmanned aerial vehicle using CNN[J]. Interna-tional Journal of Advance Research, Ideas and Innova-tions in Technology, 2019, 5: 241-243. [26] OSCO L P, JUNIOR J M, RAMOS A P M, et al. A review on deep learning in UAV remote sensing[J]. Inter-national Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102456. [27] SRIVASTAVA S, NARAYAN S, MITTAL S. A survey of deep learning techniques for vehicle detection from UAV images[J]. Journal of Systems Architecture, 2021, 117: 102152. [28] CAZZATO D, CIMARELLI C, SANCHEZ-LOPEZ J L, et al. A survey of computer vision methods for 2d object detection from unmanned aerial vehicles[J]. Journal of Imaging, 2020, 6(8): 78. [29] 陈琳,刘允刚.面向无人机的视觉目标跟踪算法:综述与展望[J]. 信息与控制, 2022, 51(01): 23-40. [30] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2001, 1: 511-518. [31] DALAL N, TRIGGS B. Histograms of oriented gradi-ents for human detection[C]//2005 IEEE Computer So-ciety Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2005: 886-893. [32] FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2008: 1-8. [33] ABUGHALIEH K M, SABABHA B H, RAWASHDEH N A. A video-based object detection and tracking system for weight sensitive UAVs[J]. Multimedia Tools and Applications, 2019, 78(7): 9149-9167. [34] BAYKARA H C, BIYIK E, GüL G, et al. Real-time detection, tracking and classification of multiple moving objects in UAV videos[C]//2017 IEEE 29th International Conference on Tools with Artificial Intelligence. Piscataway: IEEE Press, 2017: 945-950. [35] JIANG X, CAO X. Surveillance from above: A detec-tion-and-prediction based multiple target tracking method on aerial videos[C]//2016 Integrated Communications Navigation and Surveillance. Piscataway: IEEE Press, 2016:4D2-1-4D2-13. [36] AVOLA D, CINQUE L, DIKO A, et al. MS-Faster R-CNN: Multi-stream backbone for improved Faster R-CNN object detection and aerial tracking from UAV im-ages[J]. Remote Sensing, 2021, 13(9): 1670. [37] STADLER D. Multi-Object tracking in Drone Vide-os[C]//2020 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Labora-tory. Germay: IOSB, 2021:123-133. [38] HUANG W, ZHOU X, DONG M, et al. Multiple ob-jects tracking in the UAV system based on hierarchical deep high-resolution network[J]. Multimedia Tools and Applications, 2021, 80(9): 13911-13929. [39] ZHANG S, ZHUO L, ZHANG H, et al. Object tracking in unmanned aerial vehicle videos via multifeature dis-crimination and instance-aware attention network[J]. Remote Sensing, 2020, 12(16): 2646. [40] LIU Z, GAO G, SUN L, et al. HRDNet: high-resolution detection network for small objects[C]//2021 IEEE In-ternational Conference on Multimedia and Expo. Pisca-taway: IEEE Press, 2021: 1-6. [41] LIU Y, YANG F, HU P. Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks[J]. IEEE Access, 2020,8: 145740-145750. [42] AZIMI S M, KRAUS M, BAHMANYAR R, et al. Mul-tiple pedestrians and vehicles tracking in aerial imagery: a comprehensive study [DB/OL]. arXiv preprint: 2010.09689, 2020. [43] DU Y, WAN J, ZHAO Y, et al. GIAOTracker: A com-prehensive framework for MCMOT with global infor-mation and optimizing strategies in VisDrone 2021[C]//2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2021: 2809-2819. [44] T?TTRUP D, SKOVGAARD S L, SEJERSEN J F, et al. A fast and accurate approach to multiple-vehicle lo-calization and tracking from monocular aerial images[J]. Journal of Imaging, 2021, 7(12): 270. [45] ALBABA B M, OZER S. SyNet: An ensemble network for object detection in UAV images[C]//2020 25th In-ternational Conference on Pattern Recognition. Pisca-taway: IEEE Press, 2021: 10227-10234. [46] CAO J, CHOLAKKAL H, ANWER R M, et al. D2det: towards high quality object detection and instance seg-mentation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 11485-11494. [47] YANG F, FAN H, CHU P, et al. Clustered object detec-tion in aerial images[C]// 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 8311-8320. [48] ZHANG R, SHAO Z, HUANG X, et al. Object detec-tion in UAV images via global density fused convolu-tional network[J]. Remote Sensing, 2020, 12(19): 3140. [49] YU W, YANG T, CHEN C. Towards resolving the chal-lenge of long-tail distribution in UAV images for object detection[C]// 2021 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2021: 3258-3267. [50] ZHANG X, IZQUIERDO E, CHANDRAMOULI K. Dense and small object detection in UAV vision based on cascade network[C]//2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE Press, 2019: 118-126. [51] YANG J, XIE X, YANG W. Effective contexts for UAV vehicle detection[J]. IEEE Access, 2019, 7: 85042-85054. [52] WU Z, SURESH K, NARAYANAN P, et al. Delving into robust object detection from unmanned aerial vehi-cles: a deep nuisance disentanglement approach[C]//2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 1201-1210. [53] ZHANG W, LIU C, CHANG F, et al. Multi-scale and occlusion aware network for vehicle detection and seg-mentation on UAV aerial images[J]. Remote Sensing, 2020, 12(11): 1760. [54] CHEN C, ZHANG Y, LV Q, et al. Rrnet: a hybrid detec-tor for object detection in drone-captured imag-es[C]//2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE Press, 2019: 100-108. [55] WANG H, WANG Z, JIA M, et al. Spatial attention for multi-scale feature refinement for object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE Press, 2019: 64-72. [56] TANG Z, LIU X, YANG B. PENet: Object detection using points estimation in high definition aerial images[C] //2020 19th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE Press, 2020: 392-398. [57] DIKE H U, ZHOU Y. A robust quadruplet and faster region-based CNN for UAV video-based multiple object tracking in crowded environment[J]. Electronics, 2021, 10(7): 795. [58] LIN Q, DING Y, XU H, et al. ECASCADE-RCNN: Enhanced cascade RCNN for multi-scale object detection in UAV images[C]//2021 7th International Conference on Automation, Robotics and Applications. Piscataway: IEEE Press, 2021: 268-272. [59] YOUSSEF Y, ELSHENAWY M. Automatic vehicle counting and tracking in aerial video feeds using cascade region-based convolutional neural networks and feature pyramid networks[J]. Transportation Research Record, 2021, 2675(8): 304-317. [60] LEE Y, LEE S, YOO J, et al. Efficient single-shot multi-object tracking for vehicles in traffic scenarios[J]. Sen-sors, 2021, 21(19): 6358. [61] MAKAROV S B, PAVLOV V A, BEZBORODOV A K, et al. Multiple object tracking using convolutional neural network on aerial imagery sequences[C]//2021 In-ternational Youth Conference on Electronics, Telecom-munications and Information Technologies. Springer, Cham, 2021: 413-420. [62] HOSSAIN S, LEE D. Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices[J]. Sensors, 2019, 19(15): 3371. [63] LI J, CHEN S, ZHANG F, et al. An adaptive framework for multi-vehicle ground speed estimation in airborne videos[J]. Remote Sensing, 2019, 11(10): 1241. [64] EMIYAH C, NYARKO K, CHAVIS C, et al. Extracting vehicle track information from unstabilized drone aerial videos using YOLO v4 common object detector and computer vision[C]//2021 Future Technologies Confer-ence. Springer, Cham, 2021: 232-239. [65] YANG T, LI D, BAI Y, et al. Multiple-object-tracking algorithm based on dense trajectory voting in aerial vid-eos[J]. Remote Sensing, 2019, 11(19): 2278. [66] ZHANG P, ZHONG Y, LI X. SlimYOLO V3: Narrower, faster and better for real-time UAV applications[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE Press, 2019: 37-45. [67] LIU M, WANG X, ZHOU A, et al. UAV-YOLO: small object detection on unmanned aerial vehicle perspec-tive[J]. Sensors, 2020, 20(8): 2238. [68] KYRKOU C, PLASTIRAS G, THEOCHARIDES T, et al. DroNet: efficient convolutional neural network de-tector for real-time UAV applications[C]//2018 Design, Automation & Test in Europe Conference & Exhibition. Piscataway: IEEE Press, 2018: 967-972. [69] LIU Y, YANG F, HU P. Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks[J]. IEEE Access, 2020, 8: 145740-145750. [70] BALAMURALIDHAR N, TILON S, NEX F. MultEYE: Monitoring system for real-time vehicle detection, tracking and speed estimation from UAV imagery on edge-computing platforms[J]. Remote sensing, 2021, 13(4): 573. [71] NING M, MA X, LU Y, et al. SeeFar: Vehicle Speed Estimation and Flow Analysis from a Moving UAV[C]// International Conference on Image Analysis and Pro-cessing. Springer, Cham, 2022: 278-289. [72] LI M, ZHAO X, LI J, et al. COMNet: Combinational neural network for object detection in UAV-borne thermal images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(8): 6662-6673. [73] ZHANG J, LIANG X, WANG M, et al. Coarse-to-fine object detection in unmanned aerial vehicle imagery using lightweight convolutional neural network and deep motion saliency[J]. Neurocomputing, 2020, 398: 555-565. [74] LIU Y, DING Z, CAO Y, et al. Multi-scale feature fusion UAV image object detection method based on dilated convolution and attention mechanism[C]//2020 8th International Conference on Information Technology: IoT and Smart City. New York: ACM, 2020: 125-132. [75] ZHANG Z, LIU Y, LIU T, et al. DAGN: A real-time UAV remote sensing image vehicle detection frame-work[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(11): 1884-1888. [76] LI Z, LIU X, ZHAO Y, et al. A lightweight multi-scale aggregated model for detecting aerial images captured by UAVs[J]. Journal of Visual Communication and Image Representation, 2021, 77: 103058. [77] JADHAV A, MUKHERJEE P, KAUSHIK V, et al. Aeri-al multi-object tracking by detection using deep associa-tion networks[C]//2020 National Conference on Com-munications. Piscataway: IEEE Press, 2020: 1-6. [78] 刘芳,浦昭辉,张帅超.基于注意力特征融合的无人机多目标跟踪算法[J/OL]. 控制与决策:1-9 [2022-09-27]. https://kns.cnki.net/kcms/detail/21.1124.tp.20211201.1147.016.html. [79] PI Z, LIAN Y, CHEN X, et al. A novel spatial and tem-poral context-aware approach for drone-based video ob-ject detection[C]//2019 IEEE/CVF International Con-ference on Computer Vision Workshops. Piscataway: IEEE Press, 2019: 179-188. [80] LIANG Z, WANG J, XIAO G, et al. FAANet: feature-aligned attention network for real-time multiple object tracking in UAV videos[J]. Chinese Optics Letters, 2022, 20(8): 081101. [81] LIANG X, ZHANG J, ZHUO L, et al. Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(6): 1758-1770. [82] ZHANG H, WANG G, LEI Z, et al. Eye in the sky: Drone-based object tracking and 3d localization[C]// 2019 27th ACM International Conference on Multimedia. New York: ACM, 2019: 899-907. [83] WANG X, LI W, GUO W, et al. SPB-YOLO: an effi-cient real-time detector for unmanned aerial vehicle im-ages[C]//2021 International Conference on Artificial In-telligence in Information and Communication. Piscataway: IEEE Press, 2021: 099-104. [84] WU Q, ZHOU Y. Real-time object detection based on unmanned aerial vehicle[C]//2019 IEEE 8th Data Driven Control and Learning Systems Conference. Piscataway: IEEE Press, 2019: 574-579. [85] WU P, XU H, DING Y, et al. An improved online mul-tiple object tracking algorithm based on KFHT motion compensation model in the aerial videos[C]// Seventh Symposium on Novel Photoelectronic Detection Tech-nology and Applications. Bellingham: SPIE, 2021, 11763: 2431-2436. [86] KAPANIA S, SAINI D, GOYAL S, et al. Multi object tracking with UAVs using deep SORT and YOLO V3 RetinaNet detection framework[C]//2020 1st ACM Workshop on Autonomous and Intelligent Mobile Sys-tems. New York: ACM, 2020(1): 1-6. [87] TIAN G, LIU J, YANG W. A dual neural network for object detection in UAV images[J]. Neurocomputing, 2021, 443: 292-301. [88] AL-SHAKARJI N M, BUNYAK F, SEETHARAMAN G, et al. Multi-object tracking cascade with multi-step data association and occlusion handling[C]//2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE Press, 2018: 1-6. [89] WANG J, SIMEONOVA S, SHAHBAZI M. Orienta-tion-and scale-invariant multi-vehicle detection and tracking from unmanned aerial videos[J]. Remote Sens-ing, 2019, 11(18): 2155. [90] YU H, LI G, ZHANG W, et al. Self-balance motion and appearance model for multi-object tracking in UAV[C]//2019 ACM Multimedia Asia. New York: ACM, 2019(12):1-6 [91] AHN H, CHO H J. Research of multi-object detection and tracking using machine learning based on knowledge for video surveillance system[J]. Personal and Ubiquitous Computing, 2022(26): 385-394. [92] LUSK P C, BEARD R W. Visual multiple target tracking from a descending aerial platform[C]//2018 Annual American Control Conference. Piscataway: IEEE Press, 2018: 5088-5093. [93] LI W, MU J, LIU G. Multiple object tracking with mo-tion and appearance cues [C]//2019 IEEE/CVF Interna-tional Conference on Computer Vision Workshops. Pis-cataway: IEEE Press, 2019: 161-169. [94] ARDO H, NILSSON M. Multi target tracking from drones by learning from generalized graph differ-ences[C]//2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE Press, 2019: 46-54. [95] FU H, GUAN J, JING F, et al. A real-time multi-vehicle tracking framework in intelligent vehicular networks[J]. China Communications, 2021, 18(6): 89-99. [96] HE Y, FU C, LIN F, et al. Towards robust visual tracking for unmanned aerial vehicle with tri-attentional correlation filters[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2020: 1575-1582. [97] STADLER D, SOMMER L W, BEYERER J. Pas track-er: Position-, appearance-and size-aware multi-object tracking in drone videos[C]//2020 European Conference on Computer Vision. Springer, Cham, 2020: 604-620. [98] LI F, FU C, LIN F, et al. Training-set distillation for real-time UAV object tracking[C]//2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2020: 9715-9721. [99] LI Y, FU C, HUANG Z, et al. Intermittent contextual learning for keyfilter-aware UAV object tracking using deep convolutional feature[J]. IEEE Transactions on Multimedia, 2020, 23: 810-822. [100] XU S, SAVVARIS A, HE S, et al. Real-time implemen-tation of YOLO+ JPDA for small scale UAV multiple object tracking[C]// 2018 International Conference on Unmanned Aircraft Systems. Piscataway: IEEE Press, 2018: 1336-1341. [101] LEE M H, YEOM S. Tracking of moving vehicles with a UAV[C]// 2018 International Symposium on Advanced Intelligent Systems; International Conference on Soft Computing and Intelligent Systems. Piscataway: IEEE Press,2018: 928-931. [102] 王旭辰,韩煜祺,唐林波,等.基于深度学习的无人机载平台多目标检测和跟踪算法研究[J]. 信号处理, 2022, 38(01): 157-163. [103] LUO X, ZHAO R, GAO X. Research on UAV multi-object tracking based on deep learning[C]//2021 IEEE International Conference on Networking, Sensing and Control. Piscataway: IEEE Press, 2021, 1: 1-6. [104] KHALKHALI M B, VAHEDIAN A, YAZDI H S. Situation assessment-augmented interactive kalman filter for multi-vehicle tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(4): 3766-3776. [105] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]// 2017 IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2017: 3645-3649. [106] WU Y, WANG Y, ZHANG D, et al. Research on vehicle tracking method based on UAV video[C]//2022 Interna-tional Conference on Internet of Things and Smart City. Bellingham: SPIE, 2022, 12249: 801-806. [107] WU H, DU C, JI Z, et al. SORT-YM: An algorithm of multi-object tracking with YOLO V4-tiny and motion prediction[J]. Electronics, 2021, 10(18): 2319. [108] CHEN T, PENNISI A, LI Z, et al. A hierarchical associ-ation framework for multi-object tracking in airborne videos[J]. Remote Sensing, 2018, 10(9): 1347. [109] YU H, LI G, SU L, et al. Conditional GAN based indi-vidual and global motion fusion for multiple object tracking in UAV videos[J]. Pattern Recognition Letters, 2020, 131: 219-226. [110] PAN S, TONG Z, ZHAO Y, et al. Multi-object tracking hierarchically in visual data taken from drones[C]//2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE Press, 2019: 135-143. [111] BAHMANYAR R, AZIMI S, REINARTZ P. Multiple vehicle and people tracking in aerial imagery using stack of micro single-object-tracking CNNs[C]// 2019 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Tehran: ISPRS, 2019:163-170. [112] SAETCHNIKOV I, SKAKUN V, TCHERNIAVSKAIA E. Efficient objects tracking from an unmanned aerial vehicle[C]//2021 IEEE 8th International Workshop on Metrology for Aero Space. Piscataway: IEEE Press, 2021: 221-225. [113] MARVASTI-ZADEH S M, KHAGHANI J, GHANEI-YAKHDAN H, et al. COMET: context-aware IOU-guided network for small object tracking[DB/OL]. arXiv preprint:2006.02597, 2020 [114] LIN D, CHEN Q, ZHOU C, et al. TraSw: tracklet-switch adversarial attacks against multi-object tracking [DB/OL]. arXiv preprint: 2111.08954, 2021. [115] ROBICQUET A, SADEGHIAN A, ALAHI A, et al. Learning social etiquette: Human trajectory understanding in crowded scenes[C]// 2016 European Conference on Computer Vision. Springer, Cham, 2016: 549-565. [116] DU D, QI Y, YU H, et al. The unmanned aerial vehicle benchmark: Object detection and tracking[C]// 2018 Eu-ropean Conference on Computer Vision. Springer, Cham, 2018: 370-386. [117] ZHU P, WEN L, BIAN X, et al. Vision meets drones: a challenge [DB/OL]. arXiv preprint: 1804.07437, 2018. [118] ZHU P, WEN L, DU D, et al. Vision meets drones: past, present and future [DB/OL]. arXiv preprint: 2001.06303, 2020. [119] BONDI E, JAIN R, AGGRAWAL P, et al. BIRDSAI: a dataset for detection and tracking in aerial thermal infra-red videos[C]// 2020 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2020: 1747-1756. [120] HSIEH M R, LIN Y L, HSU W H. Drone-based object counting by spatially regularized regional proposal net-work[C]//2017 IEEE International Conference on Com-puter Vision. Piscataway: IEEE Press, 2017: 4145-4153. [121] XU X, ZHANG X, YU B, et al. Dac-sdc low power object detection challenge for UAV applications[J]. IEEE Transactions on Pattern Analysis and Machine In-telligence, 2019, 43(2): 392-403. [122] MANDAL M, KUMAR L K, VIPPARTHI S K. MOR-UAV: A benchmark dataset and baselines for moving object recognition in UAV videos[C]// 2020 28th ACM International Conference on Multimedia. New York: ACM, 2020: 2626-2635. [123] ZHU P, SUN Y, WEN L, et al. Drone based rgbt vehicle detection and counting: a challenge[DB/OL]. arXiv preprint: 2003.02437. [124] BOZCAN I, KAYACAN E. Au-air: A multi-modal un-manned aerial vehicle dataset for low altitude traffic surveillance[C]//2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2020: 8504-8510. [125] ZHANG H, SUN M, LI Q, et al. An empirical study of multi-scale object detection in high resolution UAV im-ages[J]. Neurocomputing, 2021, 421: 173-182. [126] ZHANG W, LIU C, CHANG F, et al. Multi-scale and occlusion aware network for vehicle detection and seg-mentation on UAV aerial images[J]. Remote Sensing, 2020, 12(11): 1760. [127] BERNARDIN K, STIEFELHAGEN R. Evaluating multiple object tracking performance: the clear mot metrics[J]. EURASIP Journal on Image and Video Pro-cessing, 2008, 2008: 1-10. [128] RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]// 2016 European conference on computer vision. Springer, Cham, 2016: 17-35. [129] LUITEN J, OSEP A, DENDORFER P, et al. HOTA: a higher order metric for evaluating multi-object tracking[J]. International Journal of Computer Vision, 2021, 129(2): 548-578. |
[1] | SU Lingfei, HUA Yongzhao, DONG Xiwang, REN Zhang. Human-UAV swarm multi-modal intelligent interaction methods [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S1): 727001-727001. |
[2] | ZHAO Liangyu, LI Dan, ZHAO Chenyue, JIANG Fei. Some achievements on detection methods of UAV autonomous landing markers [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 25882-025882. |
[3] | CAO Ming, WANG Peng, ZUO Hongfu, ZENG Haijun, SUN Jianzhong, YANG Weidong, WEI Fang, CHEN Xuefeng. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: Comprehensive off-board diagnosis, life management and intelligent condition based MRO [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625574-625574. |
[4] | LIU Jiaqi, FENG Yunwen, LU Cheng, XUE Xiaofeng, PAN Weihuang. Safety analysis of aero-engine operation based on intelligent neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625375-625375. |
[5] | SHAO Yiwei, CHEN Jiayu, LIN Cuiying, WAN Cheng, GE Hongjuan, SHI Zhilong. Gearbox fault diagnosis with small training samples: An improved deep forest based method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 625429-625429. |
[6] | LIU Zichao, WANG Jiang, HE Shaoming, LI Yufei. A computational guidance algorithm for impact angle control based on predictor-corrector concept [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 325433-325433. |
[7] | SUN Canfei, HUANG Linran, SHEN Yong. Fault diagnosis of helicopter planetary gear transmission system under complex operating conditions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 625480-625480. |
[8] | KANG Yuxiang, CHEN Guo, WEI Xunkai, ZHOU Lei. Deep residual hedging network and its application in fault diagnosis of rolling bearings [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 625201-625201. |
[9] | LYU Shuaishuai, YANG Yu, WANG Binwen, YIN Chenfei. A crack identification method of aircraft structure based on improved FaceNet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 525463-525463. |
[10] | LIU Tianyuan, ZHENG Hangbin, YANG Changqi, BAO Jinsong, WANG Junliang, GU Jun. Explainable deep learning method for laser welding defect detection [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 524961-524961. |
[11] | KANG Shuo, KE Zhenzheng, WANG Xuan, ZHU Weidong. Detection method of defects in automatic fiber placement based on fusion of infrared and visible images [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 425187-425187. |
[12] | ZHAN Qingliang, BAI Chunjin, ZHANG Ning, GE Yaojun. Feature extraction method of flow around airfoil based on time-history convolutional autoencoder [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526531-526531. |
[13] | YI Jianmiao, DENG Feng, QIN Ning, LIU Xueqiang. Fast prediction of transonic flow field using deep learning method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526747-526747. |
[14] | CAI Guobiao, ZHANG Baiyi, HE Bijiao, WENG Huiyan, LIU Lihui. Intelligent computation of vacuum plume [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527352-527352. |
[15] | LI Hongguang, WANG Fei, DING Wenrui. Survey on multi-task learning for object classification and recognition [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 24889-024889. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341