[1] KAPILA V, SPARKS A G, BUFFINGTON J M, et al. Spacecraft formation flying:Dynamics and control[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3):561-564.
[2] REN W, BEARD R. Decentralized scheme for spacecraft formation flying via the virtual structure approach[J].Journal of Guidance,Control, and Dynamics, 2004, 27(1):73-82.
[3] BREAD R W, LAWTON J, HOW J P. A coordination architecture for spacecraft formation control[J]. IEEE Transactions on Control Systems Technology, 2001, 9(6):777-790.
[4] WANG P K C, HADAEGH F Y. Coordination and control of multiple microspacecraft moving in formation[J]. Journal of the Astronautical Scineces, 1996, 44(3):315-335.
[5] CANUTO E, COLANGELO L, LOTUFO M, et al. Satellite-to-satellite attitude control of a long-distance spacecraft formation for the next generation gravity mission[J]. European Journal of Control, 2015, 25(5):1-16.
[6] ZHOU N, XIA Y Q. Coordination control design for formation reconfiguration of multiple spacecraft[J]. IET Control Theory and Applications, 2015, 9(15):2222-2231.
[7] 郑重, 宋申民. 考虑避免碰撞的编队卫星自适应协同控制[J]. 航空学报, 2013, 34(8):1934-1943. ZHENG Z, SONG S M. Adaptive coordination control of satellites within formation considering collision avoidance[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1934-1943(in Chinese).
[8] HU Q L, DONG H Y, ZHANG Y M, et al. Tracking control of spacecraft formation flying with collision avoidance[J]. Aerospace Science and Technology, 2015, 42:353-364.
[9] ZHANG D, SONG S, PEI R. Safe guidance for autonomous rendezvous and docking with a noncooperative target[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2010.
[10] VARMA S, KUMAR K D. Fault tolerant satellite attitude control using solar radiation pressure based on nonlinear adaptive sliding mode[J]. Acta Astronautica, 2009, 66(3-4):486-500.
[11] RUITER A D. A fault tolerant magnetic spin stabilizing controller for JC2Sat-FF mission[J]. Acta Astronautica, 2011, 68(1-2):160-171.
[12] JIN J, KO S, RYOO C K. Fault tolerant control for satellites with four reaction wheels[J]. Control Engineering Practice, 2008, 16(10):1250-1258.
[13] CAI W, LIAO X, SONG D Y. Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2012, 31(5):1456-1463.
[14] XIAO B, HU Q, ZHANG Y. Finite-time attitude tracking of spacecraft with fault-tolerant capability[J]. IEEE Transactions on Control Systems Technology, 2015, 23(4):1338-1350.
[15] DONG H Y, HU Q L, MA G F. Dual-quaternion based fault-tolerant control for spacecraft formation flying with finite-time convergence[J]. ISA Transactions, 2016, 61(99):87-94.
[16] SINGLA P, SUBBARAO K, JUNKINS J L. Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4):892-902.
[17] KRISTIANSEN R, NICKLASSON P J. Spacecraft formation flying:A review and new results on state feedback control[J]. Acta Astronautica, 2009, 65(11-12):1537-1552.
[18] MURUGESAN S, GOEL P S. Fault-tolerant spacecraft attitude control system[J]. Sadhana, 1987, 11(1-2):233-261.
[19] RIMON E, KODITSCHEK D E. Exact robot navigation using artificial potential functions[J]. IEEE Transactions on Robotics and Automation, 1992, 8(5):501-518.
[20] BADAWY A, MCINNES C R. Small spacecraft formation using potential function[J]. Acta Astronautica, 2009, 65(11-12):1783-1788.
[21] GAZI V, ORDONEZ R. Target tracking using artificial potentials and sliding mode control[J]. International Journal of Control, 2007, 80(10):1626-1635.
[22] ZHANG F. The schur complement and its applications[M]. New York:Springer, 2006:17-46.
[23] LIU X F, LU P. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):750-765. |