ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2020, Vol. 41 ›› Issue (S1): 723738-723738.doi: 10.7527/S1000-6893.2019.23738
Previous Articles Next Articles
JIA Yongnan1, TIAN Siying2, LI Qing1
Received:
2019-12-17
Revised:
2019-12-20
Online:
2020-06-30
Published:
2019-12-26
Supported by:
CLC Number:
JIA Yongnan, TIAN Siying, LI Qing. Recent development of unmanned aerial vehicle swarms[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S1): 723738-723738.
[1] | 宋怡然,申超,李东兵. 美国分布式低成本无人机集群研究进展[J]. 飞航导弹,2016(8):17-22. SONG Y R, SHEN C, LI D B. A review of the research on distributed, low-cost system for unmanned aerial vehicles (UAVs) swarm of the United States[J]. Aerodynamic Missile Journal, 2016(8):17-22(in Chinese). |
[2] | 陈晶. 解析美海军低成本无人机蜂群技术[J]. 无人机,2016(1):24-26. CHEN J. The US navy's low-cost swarming drone technology[J]. Unmanned Vehicles, 2016(1):24-26(in Chinese). |
[3] | REYNOLDS C W. Flocks, herds, and schools:A distributed behavioral model[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4):25-34. |
[4] | VICSEK T, CZIROK A, JACOB E B, et al. Novel type of phase transitions in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6):1226. |
[5] | VICSEK T. A question of scale[J]. Nature, 2001, 411(6836):421. |
[6] | JADBABAIE A, LIN J, MORSE A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Transactions on Automatic Control, 2003, 48(6):988-1001. |
[7] | GAZI V, PASSINO K M. Stability analysis of swarms[J]. IEEE Transactions on Automatic Control, 2003, 48(4):692-697. |
[8] | OLFATI-SABER R. Flocking for multi-agent dynamic systems:Algorithms and theory[J]. IEEE Transactions on Automatic Control, 2006, 51(3):401-420. |
[9] | CUCKER F, SMALE S. Emergent behavior in flocks[J]. IEEE Transactions on Automatic Control, 2007, 52(5):852-862. |
[10] | 吕娜,刘创,陈柯帆,等. 一种面向航空集群的集中控制式网络部署方法[J]. 航空学报, 2018, 39(7):321961. LYU N, LIU C, CHEN K F, et al. A method for centralized control network deployment of aeronautic swarm[J]. Acta Aerodynamic et Astronautica Sinica, 2018, 39(7):321961(in Chinese). |
[11] | JING G, ZHENG Y, WANG L. Group flocking of multiple mobile agents[C]//33rd Chinese Control Conference, 2014:1156-1161. |
[12] | CHEN Y, CHANG S. An agent-based simulation for multi-UAVs coordinative sensing[J]. International Journal of Intelligent Computing and Cybernetics, 2008, 1(2):269-284. |
[13] | CUCKER F, DONG J. Avoiding collisions in flocks[J]. IEEE Transactions on Automatic Control, 2010, 55(5):1238-1243. |
[14] | BAYEZIT I, FIDAN B. Distributed cohesive motion control of flight vehicle formations[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12):5763-5772. |
[15] | RAHIMI R, ABDOLLAHI F, NAQSHI K. Time-varying formation control of a collaborative heterogeneous multi agent system[J]. Robotics and Autonomous Systems, 2014, 62(12):1799-1805. |
[16] | DONG X, YU B, SHI Z, et al. Time-varying formation control for unmanned aerial vehicles:Theories and applications[J]. IEEE Transactions on Control Systems Technology, 2015, 23(1):340-348. |
[17] | 周绍磊,祁亚辉,张雷,等. 切换拓扑下无人机集群系统时变编队控制[J]. 航空学报, 2017, 38(4):320452. ZHOU S L, QI Y H, ZHANG L, et al. Time-varying formation control of UAV swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):320452(in Chinese). |
[18] | OYEKAN J. Bio-Inspired vision-based leader-follower formation flying in the presence of delays[J]. Robotics, 2016, 5(3):18. |
[19] | KOWNACKI C. Multi-UAV flight using virtual structure combined with behavioral approach[J]. Acta Mechanica et Automatica, 2016,10(2):92-99. |
[20] | QIU H, DUAN H. Multiple UAV distributed close formation control based on in-flight leadership hierarchies of pigeon flocks[J]. Aerospace Science and Technology, 2017, 70:471-486. |
[21] | ALFEO A L, CIMINO M G C A, DE F N, et al. Design and simulation of the emergent behavior of small drones swarming for distributed target localization[J]. Journal of Computational Science, 2018, 29:19-33. |
[22] | JIA Y N, LI Q, ZHANG W C. A distributed cooperative approach for unmanned aerial vehicle flocking[J]. Chaos, 2019, 29(4):043118. |
[23] | JIA Y N, YANG Y H, LI Q, et al. Aerial escort task using networked miniature unmanned aerial vehicles[J/OL]. (2019-08-30)[2019-09-11].International Journal of Control, https://www_tandfonline.xilesou.top/doi/abs/10.1080/00207179.2019.1661522. |
[24] | BONABEAU E, DORIGO M, THERAULAZ G. Swarm intelligence-from natural to artificial systems[M]. Oxford:Oxford University Press, 1999. |
[25] | KUMAR V. The 5S's of aerial robotics:Small, smart, safe, speedy and swarming[C]//CCF-GAIR, 2016. |
[26] | HEADQUARTERS. United States air force unmanned aircraft systems flight plan 2016-2036[R]. Washington, D.C.:USAF, 2009. |
[27] | CAMBONE S A. Unmanned aircraft systems roadmap 2005-2030[R]. Washington, D.C.:Office of the Secretary of Defense, 2005. |
[28] | BALLERINI M, CABIBBO N, CANDELIER R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance:Evidence from a field study[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4):1232-1237. |
[29] | COUZIN I D, KRAUSE J, FRANKS N R, et al. Effective leadership and decision-making in animal groups on the move[J]. Nature, 2005, 433(7025):513-516. |
[30] | MEHES E, VICSEK T. Collective motion of cells:From experiments to models[J]. Integrative Biology, 2014, 6(9):831-854. |
[31] | JIANG L, GIUGGIOLI L, PERNA A, et al. Identifying influential neighbors in animal flocking[J]. PloS Computational Biology, 2017, 13(11):e1005822. |
[32] | ALFEO A L, CIMINO M G C A, DE F, et al. Swarm coordination of mini-UAVs for target search using imperfect sensors[J]. Intelligent Decision Technologies, 2018, 12(2):149-162. |
[33] | ANDREA C, ALESSIO C, IRENE G, et al. Scale-free correlations in starling flocks[J]. Proceedings of the National Academy of Sciences of the National Academy of Sciences of the United States of America, 2010, 107(26):11865-11870. |
[34] | CISZAK M, COMPARINI D, MAZZOLAI B, et al. Swarming behavior in plant roots[J]. PloS One, 2012, 7(1):e29759. |
[35] | DEUTSCH A, THERAULAZ G, VICSEK T. Collective motion in biological systems[J]. Interface Focus, 2012, 2(6):689-692. |
[36] | LI L, XIAO W B, QIU W, et al. New flocking models apply for UAV formation[J]. Journal of Physics:Conference Series, 2019, 1169:012025. |
[37] | BENEDETTI M, DURSO F, FORTINO G, et al. A fault-tolerant self-organizing flocking approach for UAV aerial survey[J]. Journal of Network and Computer Applications, 2017, 96:14-30. |
[38] | BAHLOUL N E H, BOUDJIT S, ABDENNEBI M, et al. A flocking-based on demand routing protocol for unmanned aerial vehicles[J]. Journal of Computer Science and Technology, 2018, 33(2):263-276. |
[39] | DUAN H B, LI P. Autonomous control for unmanned aerial vehicle swarms based on biological collective behaviors[J]. Science & Technology Review, 2017, 35(7):17-25. |
[40] | ZHANG T J. Unmanned aerial vehicle formation inspired by bird flocking and foraging behavior[J]. International Journal of Automation and Computing, 2018, 15(4):402-416. |
[41] | QUINTERO S, COLLINS G, HESPANHA J. Flocking with fixed-wing UAVs for distributed sensing:A stochastic optimal control approach[C]//Proceedings of the American Control Conference, 2013:2025-2031. |
[42] | ZENKEVICH S L, GALUSTYAN N K. Decentralized control of a quadrocopter swarm[J]. Mechatronics, Automation and Control, 2016, 17(11):774-82. |
[43] | QIU H X, DUAN H B. Pigeon interaction mode switch-based UAV distributed flocking control under obstacle environments[J]. ISA Transactions, 2017, 71(1):93-102. |
[44] | JIA Y N, LI Q, QIU S Q. Distributed leader-follower flight control for large-scale clusters of small unmanned aerial vehicles[J]. IEEE Access, 2018, 6:32790-32799. |
[45] | MAO X, ZHANG H B, WANG Y H. Flocking of quad-rotor UAVs with fuzzy control[J]. ISA Transactions, 2018, 74:185-193. |
[46] | ZHAO W, CHU H, ZHANG M, et al. Flocking control of fixed-wing UAVs with cooperative obstacle avoidance capability[J]. IEEE Access, 2019, 7:17798-17808. |
[47] | DAI F, CHEN M, WEI X, et al. Swarm intelligence-inspired autonomous flocking control in UAV networks[J]. IEEE Access, 2019, 7:61786-61796. |
[48] | SHEN J. Cucker-smale flocking under hierarchical leadership[J]. Society for Industrial and Applied Mathematics, 2006, 68(3):694-719. |
[49] | LI B, LI J, HUANG K W. Modeling and flocking consensus analysis for large-scale UAV swarms[J]. Mathematical Problems in Engineering, 2013, 2013:368369. |
[50] | VIRÁGH C, VASARHELYI G, TARCAI N, et al. Flocking algorithm for autonomous flying robots[J]. Bioinspiration and Biomimetics, 2014, 9(2):025012. |
[51] | HUNG S, GIVIGI S N. A Q-learning approach to flocking with UAVs in a stochastic environment[J]. IEEE Transactions on Cybernetics, 2017, 47(1):186-197. |
[52] | VASARHELYI G, VIRAGH C, SOMORJAI G, et al. Optimized flocking of autonomous drones in confined environments[J]. Science Robotics, 2018, 3(20):eaat3536. |
[53] | PARANJAPE A A, CHUNG S, KIM K, et al. Robotic herding of a flock of birds using an unmanned aerial vehicle[J]. IEEE Transactions on Robotics, 2018, 34(4):901-915. |
[54] | GARCIA G, KESHMIRI S. Biologically inspired trajectory generation for swarming UAVs using topological distances[J]. Aerospace Science and Technology, 2016, 54:312-319. |
[55] | KOWNACKI C, OLDZIEJ D. Fixed-wing UAVs flock control through cohesion and repulsion behaviors combined with a leadership[J/OL]. (2016-01-12)[2017-05-15]. International Journal of Advanced Robotic Systems, https://doi.org/10.5772/62249. |
[56] | HE L L, BAI P, LIANG X L, et al. Feedback formation control of UAV swarm with multiple implicit leaders[J]. Aerospace Science and Technology, 2018, 72:327-334. |
[57] | CHEN M, DAI F, WANG H, et al. DFM:A distributed flocking model for UAV swarm networks[J]. IEEE Access, 2018, 6:69141-69150. |
[58] | BEN-ASHER P G Y, FELDMAN S, FELDMAN M. Distributed decision and control for cooperative UAVs using ad hoc communication[J]. IEEE Transactions on Control System Technology, 2008, 16(3):511-516. |
[59] | KHARE V R, WANG F Z, WU S, et al. Ad-hoc network of unmanned aerial vehicle swarms for search and destroy tasks[C]//4th International IEEE Conference on Intelligent Systems. Piscataway:IEEE Press, 2008:665-672. |
[60] | HAUERT S, LEVEN S, VARGA M, et al. Reynolds flocking in reality with fixed-wing robots:Communication range vs maximum turning rate[C]//IEEE/RSJ International Conference on Intelligent Robot System, 2011:5015-5020. |
[61] | KIM S W, SEO S W. Cooperative unmanned autonomous vehicle control for spatially secure group communications[J]. IEEE Journal on Selected Area in Communications, 2012, 30(5):870-882. |
[62] | LUO F, JIANG C, DU J, et al. A distributed gateway selection algorithm for UAV networks[J]. IEEE Transactions on Emerging Topics in Computing, 2015, 3(1):22-33. |
[63] | BAYEZIT I, FIDAN B. Distributed cohesive motion control of flight vehicle formations[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12):5763-5772. |
[64] | CAO W, XU W. A new multi-UAV cooperation method[C]//9th International Symposium on Computational Intelligence and Design, 2016:231-234. |
[65] | JIA Y N. Swarming coordination of multiple unmanned aerial vehicles in three-dimensional space[C]//AIAA Modeling and Simulation Technologies Conference. Reston:AIAA, 2016. |
[66] | CIARLETTA L, GUENARD A, PRESSE Y, et al. Simulation and platform tools to develop safe flock of UAVs:A cps application-driven research[C]//International Conference on Unmanned Aircraft Systems, 2014:95-102. |
[67] | CORNER J J, LAMONT G B. Parallel simulation of UAV swarm scenarios[C]//Proceedings of the Winter Simulation Conference, 2004:363-371. |
[68] | MENDEZ L, GIVIGI S N, SCHWARTZ H M, et al. Validation of swarms of robots:Theory and experimental results[C]//7th International Conference on System of Systems Engineering, 2012:332-337. |
[69] | SASKA M. Mav-swarms:Unmanned aerial vehicles stabilized along a given path using onboard relative localization[C]//International Conference on Unmanned Aircraft Systems, 2015:894-903. |
[70] | GIL A E, PASSINO K M, GANAPATHY S. Cooperative task scheduling for networked uninhabited air vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 4(2):561-581. |
[71] | JOELIANTO E, SAGALA A. Swarm tracking control for flocking of a multi-agent system[C]//IEEE Conference on Control, Systems and Industrial Informatics, 2012:75-80. |
[72] | VÁSÁRHELYI G, VIRÁGH C, SOMORJAI G, et al. Outdoor flocking and formation flight with autonomous aerial robots[C]//IEEE/RSJ International Conference on Intelligent Robot Systems. Piscataway:IEEE Press, 2014:3866-3873. |
[73] | BARABASI A-L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512. |
[74] | FANG H, WEI Y, CHEN J, et al. Flocking of second-order multiagent systems with connectivity preservation based on algebraic connectivity estimation[J]. IEEE Transactions on Cybernetics, 2017, 47(4):1067-1077. |
[75] | SOORKI M N, TAVAZOEI M S. Adaptive robust control of fractional-order swarm systems in the presence of model uncertainties and external disturbances[J]. IET Control Theory & Applications, 2018, 12(7):961-969. |
[76] | SAHU B K, SUBUDHI B. Flocking control of multiple AUVs based on fuzzy potential functions[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5):2539-2551. |
[77] | YAZDANI S, HAERI M, SU H. Sampled-data leader-follower algorithm for flocking of multi-agent systems[J]. IET Control Theory and Applications, 2019, 13(5):609-619. |
[78] | ZHAN J, LI X. Flocking of multi-agent systems via model predictive control based on position-only measurements[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1):377-385. |
[79] | ISKANDARANI M, GIVIGI S N, FUSINA G, et al. Unmanned aerial vehicle formation flying using linear model predictive control[C]//8th Annual IEEE System Conference, 2014:18-23. |
[80] | ZHANG H, LIU B, CHENG Z, et al. Model predictive flocking control of the cucker-smale multi-agent model with input constraints[J]. IEEE Transactions on Circuits and Systems I, 2016, 63(8):1265-1275. |
[81] | DONG J, QIU L. Flocking of the cucker-smale model on general digraphs[J]. IEEE Transactions on Automatic Control, 2017, 62(10):5234-5239. |
[82] | ZHANG H, CHENG Z, CHEN G, et al. Model predictive flocking control for second-order multi-agent systems with input constraints[J]. IEEE Transactions on Circuits and Systems I, 2015, 62(6):1599-1606. |
[83] | RAO S, GHOSE D. Sliding mode control-based autopilots for leaderless consensus of unmanned aerial vehicles[J]. IEEE Transactions on Control System Technology, 2014, 22(5):1964-1972. |
[84] | JIA Y N, VICSEK T. Modeling hierarchical flocking[J]. New Journal of Physics, 2019, 21:093048. |
[85] | JIA Y N, WANG L. Decentralized formation flocking for multiple non-holonomic agents[C]//6th IEEE International Conference on Cybernetics and Intelligent Systems. Piscataway:IEEE Press, 2013:100-105. |
[86] | BENNO L, DEMIAN L. The rotating vicsek model:Pattern formation and enhanced flocking in chiral active matter[J]. Physical Review Letters, 2016, 119(5):058002. |
[1] | Chunhui ZHAO, Anmeng LIU, Yang LYU, Quan PAN. A survey of resilient self-localization for UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28839-028839. |
[2] | Jiaxiu YANG, Xinkai LI, Hongli ZHANG, Hao WANG. Time-varying formation control for heterogeneous clusters with switching topologies via reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329166-329166. |
[3] | Qingrui ZHANG, Yunyun LIU, Huijie SUN, Bo ZHU. Robust cooperative tracking control for close formation of fixed⁃wing unmanned aerial vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 629233-629233. |
[4] | An ZHANG, Mi YANG, Wenhao BI, Baichuan ZHANG, Yunong WANG. Task allocation of heterogeneous multi-UAVs in uncertain environment based on multi-strategy integrated GWO [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 327115-327115. |
[5] | Zhiqiang WEI, Zheming WENG, Yongzhao HUA, Xiwang DONG, Zhang REN. Formation-containment tracking control for heterogeneous unmanned swarm systems with switching topologies [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 326504-326504. |
[6] | HU Yangxiu, ZHAO Changchun, JIA Chenglong, QIAN Zhouyuan, HU Tao. Synchronous path formation control of UAV swarm based on robot operating system (ROS) [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S1): 726914-726914. |
[7] | LIU Fang, HAN Xiao. Adaptive aerial object detection based on multi-scale deep learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 325270-325270. |
[8] | LI Jie, ZHANG Heng, YANG Zhao. Trade-off aerodynamic design of basic wing for demonstrator UAVs with special layout for high-subsonic laminar flow verification [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526786-526786. |
[9] | DUAN Dengyan, PEI Jiatao, ZU Rui, LI Jianbo. Power optimization and control of motor variable-pitch propeller propulsion system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 623933-623933. |
[10] | HE Wei, FANG Yongchun, LIANG Xiao, ZHANG Peng. Design and implementation of a 2-DOF aerial manipulation system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324280-324280. |
[11] | LIU Deyuan, LIU Hao, Frank L LEWIS. Robust fault-tolerant formation control for tail-sitters [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324296-324296. |
[12] | YANG Sen, ZHANG Xianglun. Energy optimized maneuver trajectory generation for unmanned aerial vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S2): 724288-724288. |
[13] | TIAN Bailing, LI Pinpin, LU Hanchen, ZONG Qun. Trajectory and attitude coordinated control of multiple unmanned aerial vehicles (UAVs) in complex environments [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S2): 724245-724245. |
[14] | ZHOU Siquan, DONG Xiwang, LI Qingdong, REN Zhang. Time-varying formation control and disturbance rejection for UAV-UGV heterogeneous swarm system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S1): 723767-723767. |
[15] | ZHANG Zhe, WU Jian, DAI Jiyang, YING Jin, HE Cheng. Fast penetration path planning for stealth UAV based on improved A-Star algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 323692-323692. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341