[1] 武喜萍, 杨红雨, 韩松臣. 基于复杂网络的空中交通特征与延误传播分析[J]. 航空学报, 2017, 38(S1):113-119. WU X P, YANG H Y, HAN S C. Analysis of properties and delay propagation of air traffic based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):113-119(in Chinese). [2] 张军峰, 隋东, 汤新民. 基于状态相关模态切换混合估计的航迹预测[J]. 系统工程理论与实践, 2014, 34(11):2955-2964. ZHANG J F, SUI D, TANG X M. Aircraft trajectory prediction based on SDTHE algorithm[J]. System Engineering-Theory & Practice, 2014, 34(11):2955-2964(in Chinese). [3] 高海超, 羌凌飞. 面向服务的下一代空管系统集成设计[J]. 指挥信息系统与技术, 2016,71(6):13-16. GAO H C, QIANG L F. Service-oriented integration design of next generation air traffic management system[J]. Command Information System and Technology, 2016,71(6):13-16(in Chinese). [4] 明朝辉. PBN技术下的空中交通若干关键问题研究[D]. 南京:南京航空航天大学,2018. MIN Z H. Research on key issues of air traffic system based upon performance-based navigation[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018(in Chinese). [5] CLARKE J P B, HO N T, REN L, et al. Continuous descent approach:Design and flight test for Louisville International Airport[J]. Journal of Aircraft, 2004, 41(5):1054-1066. [6] SHRESTA S, NESKOVIC D, WILLIAMS S S. Analysis of continuous descent benefits and impacts during daytime operations[C]//8th USA/Europe Air Traffic Management Research and Development Seminar (ATM2009), 2009. [7] 万莉莉. 面向环境保护的空中交通运行优化方法研究[D]. 南京:南京航空航天大学,2015. WAN L L. Research on the optimization method of air traffic operation for environmental protection[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015(in Chinese). [8] 黄晋. 评估连续下降在终端区运行所产生的利益和影响[J]. 现代电子技术, 2015(10):106-110. HUANG J. Assessment of influence of continuous descent on operation in terminal area[J]. Modern Electronics Technique, 2015(10):106-110(in Chinese). [9] 李东亚, 胡荣, 张军峰. 航空器持续下降进近技术的发展现状与展望[J]. 航空计算技术, 2016, 46(5):131-134. LI D Y, HU R, ZHANG J F, et al. Review and prospects on continuous descent approach technology of aircraft[J]. Aeronautical Computing Technique, 2016, 46(5):131-134(in Chinese). [10] ICAO. Doc I. 9931 Continuous descent operations (CDO) manual[R]. Montréal:International Civil Aviation Organization, 2010. [11] JIN L, CAO Y, SUN D. Investigation of potential fuel savings due to continuous-descent approach[J]. Journal of aircraft, 2013, 50(3):807-816. [12] TURGUT E T, USANMAZ O, CAVCAR M, et al. Effects of descent flight-path angle on fuel consumption of commercial aircraft[J]. Journal of Aircraft, 2018, 56(1):313-323. [13] FRICKE H, SEIß C, HERRMANN R. Fuel and energy benchmark analysis of continuous descent operations[J]. Air Traffic Control Quarterly, 2015, 23(1):83-108. [14] ANDREEVA-MORI A, SUZUKI S, ITOH E. Scheduling of arrival aircraft based on minimum fuel burn descents[J]. ASEAN Engineering Journal, 2011, 1(1):25-38. [15] ENEA G, BRONSVOORT J, MCDONALD G. Trade-Off between optimal profile descents, runway throughput and net fuel benefit, preliminary discussion and results[C]//17th AIAA Aviation Technology, Integration, and Operations Conference, 2017. [16] PARK S G, CLARKE J P. Optimal control based vertical trajectory determination for continuous descent arrival procedures[J]. Journal of Aircraft, 2015, 52(5):1469-1480. [17] JIA Y, CAI K. The trade-off between trajectory predictability and potential fuel savings for continuous descent operations[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), 2018. [18] SGORCEA R M, RWHIML L A W, MOUNT R E. Integrated time-based management and performance-based navigation design for trajectory-based operations[C]//Thirteenth USA/Europe Air Traffic Management Research and Development Seminar, 2019. [19] SÁEZ R, PRATS X, POLISHCHUK T, et al. Automation for separation with continuous descent operations:Dynamic aircraft arrival routes[J]. Journal of Air Transportation, 2020:1-11. [20] SOLAK S, CHEN H. Optimal metering point configurations for optimized profile descent based arrival operations at airports[J]. Transportation Science, 2018, 52(1):150-170. [21] PAWELEK A, LICHOTA P, DALMAU R, et al. Fuel-efficient trajectories traffic synchronization[J]. Journal of Aircraft, 2019, 56(2):481-492. [22] SÁEZ R, DALMAU R, PRATS X. Optimal assignment of 4D close-loop instructions to enable CDOs in dense TMAs[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), 2018. [23] SEENIVASAN D B, OLIVARES A, STAFFETTI E. Multi-aircraft optimal 4D online trajectory planning in the presence of a multi-cell storm in development[J]. Transportation Research Part C:Emerging Technologies, 2020, 110:123-142. [24] KENDALL A P, CLARKE J P. Stochastic optimization of area navigation noise abatement arrival and approach procedures[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(4):863-869. [25] DALMAU R, PRATS X, BAXLEY B. Fast sensitivity-based optimal trajectory updates for descent operations subject to time constraints[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), 2018. [26] ALAM S, NGUYEN M H, ABBASS H A, et al. Multi-aircraft dynamic continuous descent approach methodology for low-noise and emission guidance[J]. Journal of Aircraft, 2011, 48(4):1225-1237. [27] 苑克剑, 赵勇, 许玉斌. 三维动态连续下降进近(CDA)飞行航迹优化研究[J]. 民航学报, 2019, 3(1):10,28-32. YUAN K J, ZHAO Y, XU Y B, et al. Research on three-dimensional dynamic flight trajectory optimization of Continuous Descent Approach (CDA)[J]. Journal of Aviation, 2019, 3(1):10,28-32(in Chinese). [28] FAVENNEC B, SYMMANS T, HOULIHAN D, et al. Point merge integration of arrival flows enabling extensive RNAV application and continuous descent-operational services and environment definition[R]. Aufl, Brétigny:Eurocontrol Experimental Centre, 2010. [29] 邹朝忠, 杨波, 黄卫芳. 融合点进近程序和技术浅析[J]. 空中交通管制, 2010(1):13-16,34. ZOU Z Z, YANG B, HUANG W F. Merging point approach procedures and its technical analysis[J]. Air Traffic Management, 2010(1):13-16,34(in Chinese). [30] LIANG M, DELAHAYE D, MARÉCHAL P. Potential operational benefits of multi-layer point merge system on dense TMA operation hybrid arrival trajectory optimization applied to Beijing capital international airport[C]//ICRAT 2016, 7th International Conference on Research in Air Transportation, 2016. [31] 陈相安. 终端区进近中的融合点技术排序优化研究[D]. 天津:中国民航大学, 2016. CHEN X A. Research, optimization, sequencing of a point merge system in TMA approach[D]. Tianjin:Civil Aviation University of China, 2016(in Chinese). [32] ERRICO A, DI VITO V. Aircraft operating technique for efficient sequencing arrival enabling environmental benefits through CDO in TMA[C]//AIAA Scitech 2019 Forum, 2019. [33] 晁绵博, 赵向领, 李鹏程, 等. 终端区点融合进近程序设计方法研究[J]. 航空计算技术, 2016, 46(2):10-14. ZHAO M B, ZHAO X L, LI P C, et al. Research on point merge approach procedure design in terminal area[J]. Aeronautical Computing Technique, 2016, 46(2):10-14(in Chinese). [34] 苑克剑. 基于融合点的连续下降进近航迹优化研究[D]. 天津:中国民航大学, 2016. YUAN K J. Research on trajectory optimization of continuous descent approach based on merge point[D]. Tianjin:Civil Aviation University of China, 2016(in Chinese). [35] 王建忠, 王超, 张宝成. 基于点融合进近的航空器进场4D航迹规划[J]. 科学技术与工程, 2017, 17(14):333-337. WANG J Z, WANG C, ZHANG B C, et al. 4D trajectory planning method for arrivals based on merging point approach[J]. Science Technology and Engineering, 2017, 17(14):333-337(in Chinese). [36] HONG Y, CHOI B, LEE K, et al. Dynamic robust sequencing and scheduling under uncertainty for the point merge system in terminal airspace[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(9):2933-2943. [37] SOLER M, ZOU B, HANSEN M. Flight trajectory design in the presence of contrails:Application of a multiphase mixed-integer optimal control approach[J]. Transportation Research Part C:Emerging Technologies, 2014, 48:172-194. [38] GLOVER W, LYGEROS J. A multi-aircraft model for conflict detection and resolution algorithm evaluation[J]. HYBRIDGE Deliverable D, 2004, 1:3. [39] EUROCONTROL Experimental Centre. User Manual for the base of aircraft data (BADA), Revision 3.11:Report No.13/04/16-01[R].Brussels:EEC, 2013. [40] FILIPPONE A. Aircraft noise prediction[J]. Progress in Aerospace Sciences, 2014, 68:27-63. [41] DANIEL D, J-MARC A, MARC S, et al. Genetic algorithms for air traffic assignment[C]//11th European Conference on Artificial Intelligence Applications (ECAI 94), 1994. [42] JONES D F, MIRRAZAVI S K, TAMIZ M. Multi-objective meta-heuristics:An overview of the current state-of-the-art[J]. European Journal of Operational Research, 2002, 137(1):1-9. [43] ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms:Empirical results[J]. Evolutionary Computation, 2000, 8(2):173-195. [44] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. [45] YU X, LU Y Q, YU X. Evaluating multi-objective evolutionary algorithms using MCDM methods[J]. Mathematical Problems in Engineering, 2018, 2018:1-14. |