1 |
李乔扬,陈桂明,许令亮. 弹道导弹突防技术现状及智能化发展趋势[J]. 飞航导弹,2020(7):56-61.
|
|
LI Q Y, CHEN G M, XU L L. Present situation and intelligent development trend of ballistic penetration technology[J]. Aerodynamic Missile Journal,2020(7):56-61 (in Chinese).
|
2 |
赵汉元. 飞行器再入动力学和制导[M]. 长沙:国防科技大学出版社, 1997: 202-270.
|
|
ZHAO H Y. Reentry dynamics and guidance of aircraft[M]. Changsha:National University of Defense Science and Technology Press,1997: 202-270 (in Chinese).
|
3 |
ZENG X Y, WEN T G, YU Y,et al. Potential hop reachable domain over surfaces of small bodies[J]. Aerospace Science and Technology, 2021,112:106600.
|
4 |
WEN T G, ZENG X Y, CIRCI C,et al. Hop reachable domain on irregularly shaped asteroids[J]. Journal of Guidance,Control,and Dynamics, 2020,43(7):1269⁃1283.
|
5 |
邵会兵,崔乃刚,韦常柱. 滑翔导弹末段多约束智能弹道规划[J]. 光学精密工程,2019,27(2):410-420.
|
|
SHAO H B, CUI N G, WEI C Z. Multi-constrained intelligent trajectory planning for gliding missiles[J]. Optics and Precision Engineering,2019,27(2):410-420 (in Chinese).
|
6 |
李静琳,陈万春,闵昌万. 高超末段机动突防/精确打击弹道建模与优化[J]. 北京航空航天大学学报,2018,44(3):556-567.
|
|
LI J L, CHEN W C, MIN C W. Terminal hypersonic trajectory modeling and optimization for maneuvering penetration and precision strike[J]. Journal of Beijing University of Aeronautics and Astronautics,2018,44(3):556-567 (in Chinese).
|
7 |
KIM M, GRIDER K V. Terminal guidance for impact attitude angle constrained flight trajectories[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973,9(6):852–859.
|
8 |
KIM B S, LEE J G, HAN H S. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):277-288.
|
9 |
JEONG S K, CHO S J, KIM E G. Angle constraint biased PNG[C]∥Proceedings of 5th Asian Control Conference, 2004:1849⁃1854.
|
10 |
RATNOO A, GHOSE D. Impact angle constrained interception of stationary targets[J]. Journal of Guidance,Control,and Dynamics, 2008,31(6):1817-1822.
|
11 |
洪功名,陈万春. 机动飞行器多终端约束反演滑模末端导引方法[J]. 飞行力学,2015,33(3):226-231.
|
|
HONG G M, CHEN W C. Terminal guidance of maneuvering vehicle with multiple constraints based on backstepping design[J]. Flight Dynamics,2015,33(3):226-231 (in Chinese).
|
12 |
ZHANG W J, FU S N, LI W,et al. An impact angle constraint integral sliding mode guidance law for maneuvering targets interception[J]. Journal of Systems Engineering and Electronics,2020,31(1):168-184.
|
13 |
ZHAO F J, YOU H. New three-dimensional second-order sliding mode guidance law with impact-angle constraints[J]. The Aeronautical Journal,2020, 124 (1273):368-384.
|
14 |
景亮,张忠阳,崔乃刚,等. 固定时间收敛扰动观测终端滑模制导律设计[J].系统工程与电子技术,2019,41(8):1820-1826.
|
|
JING L, ZHANG Z Y, CUI N G,et al. Fixed-time disturbance observer based terminal sliding mode guidance law[J]. Systems Engineering and Electronics,2019,41(8):1820-1826 (in Chinese).
|
15 |
CHEN Z Y, CHEN W C, LIU X M,et al. Three-dimensional fixed-time robust cooperative guidance law for simultaneous attack with impact angle constraint[J]. Aerospace Science and Technology,2021,110:106523.
|
16 |
LI Q C, ZHANG W S, HAN G,et al. Finite time convergent wavelet neural network sliding mode control guidance law with impact angle constraint[J]. International Journal of Automation and Computing,2015,12(6):588⁃599.
|
17 |
MAITY A, OZA H B, PADHI R. Generalized model predictive static programming and angle- constrained guidance of air-to-ground missiles[J]. Journal of Guidance,Control,and Dynamics,2014,37(6):1897-1913.
|
18 |
ZHAO Y, SHENG Y Z, LIU X D. Analytical impact time and angle guidance via time-varying sliding mode technique[J]. ISA Transactions,2016,62:164-176.
|
19 |
ERER K S, TEKIN R. Impact vector guidance[J]. Journal of Guidance,Control,and Dynamics,2021,44(10):1892-1901.
|
20 |
YANG Y, ZHANG H H. Fractional calculus with its applications in engineering and technology[M]. California: Morgan & Claypool Publishers,2019.
|
21 |
CUONG H M, DONG H Q, TRIEU P V,et al. Adaptive fractional-order terminal sliding mode control of rubber-tired gantry cranes with uncertainties and unknown disturbances[J]. Mechanical Systems and Signal Processing,2021,154:107601.
|
22 |
唐骁,叶继坤. 针对高速机动目标的分数阶滑模制导律[J]. 航空兵器,2021,28(2):21-26.
|
|
TANG X, YE J K. Fractional sliding mode guidance law for high speed maneuvering targets[J]. Aero Weaponry,2021,28(2):21-26 (in Chinese).
|
23 |
SHENG Y Z, ZHANG Z, XIA L,Fractional-order sliding mode control based guidance law with impact angle constraint[J]. Nonlinear Dynamics, 2021,106(1):425-444.
|
24 |
GOLESTANI M, AHMADI P, FAKHARIAN A. Fractional order sliding mode guidance law: Improving performance and robustness[C]∥ 2016 4th International Conference on Control,Instrumentation,and Automation (ICCIA). Piscataway: IEEE Press, 2016: 469-474.
|
25 |
ZHOU X H, WANG W H, LIU Z H,et al. Impact angle constrained three-dimensional integrated guidance and control based on fractional integral terminal sliding mode control[J]. IEEE Access,2019,7:126857-126870.
|
26 |
刘清楷,陈坚,汪立新,等. 三维落角约束自适应分数阶滑模制导律设计[J]. 现代防御技术,2018,46(2):68-74.
|
|
LIU Q K, CHEN J, WANG L X,et al. Design of 3D adaptive fractional order sliding mode guidance law with impact angle constraints[J]. Modern Defence Technology,2018,46(2):68-74 (in Chinese).
|
27 |
LIU S X, YAN B B, ZHANG X,et al. Fractional-order sliding mode guidance law for intercepting hypersonic vehicles[J]. Aerospace, 2022,9(2):53.
|
28 |
DIETHELM K. The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus[J]. Fractional Calculus and Applied Analysis,2012,15(2):304-313.
|
29 |
NASA. U. S. standard atmosphere, 1976: NASA-TM-X-74335[R]. Washington, D.C.: NASA, 1976.
|
30 |
薛定宇. 分数阶微积分学与分数阶控制[M]. 北京:科学出版社,2018: 4-7.
|
|
XUE D Y. Fractional calculus and fractional-order control[M]. Beijing:Science Press,2018: 4-7 (in Chinese).
|