[1] WANG C, GUO J X, SHEN Z P. Prediction of 4D trajectory based on basic flight models[J]. Journal of Southwest Jiaotong University, 2009, 44(2): 295-300 (in Chinese). 王超, 郭九霞, 沈志鹏. 基于基本飞行模型的4D航迹预测方法[J]. 西南交通大学学报, 2009, 44(2): 295-300. [2] MA B M, YANG H Y, YU J. A flow forecast amending algorithm based on real-time track[J]. Microcomputer Information, 2010, 26(4): 186-187, 197 (in Chinese). 马博敏, 杨红雨, 余静. 一种基于实时航迹的流量预测修正算法[J]. 微计算机信息, 2010, 26(4): 186-187, 197. [3] TIAN W, HU M H. Airspace sector probabilistic traffic demand prediction model[J]. Journal of Southwest Jiaotong University, 2011, 46(2): 340-346 (in Chinese). 田文, 胡明华. 空域扇区概率交通需求预测模型[J]. 西南交通大学学报, 2011, 46(2): 340-346. [4] WANG C, YANG L. Probabilistic methods for airspace sector flow and congestion prediction[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 162-166 (in Chinese). 王超, 杨乐. 空域扇区流量与拥塞预测的概率方法[J]. 西南交通大学学报, 2011, 46(1): 162-166. [5] LU F, ZHANG Z N, ZHANG D M, et al. A model ofrealtime air traffic flow forecast based on flight plan[J]. Science Technology and Engineering, 2014, 14(16): 165-169 (in Chinese). 卢飞, 张兆宁, 张东满, 等. 基于航班计划的空域交通流量实时预测模型[J]. 科学技术与工程, 2014, 14(16): 165-169. [6] LI S M, XU X H, MENG L H. Flight conflictforecasting based on chaotic time series[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(4): 388-394. [7] CONG W, HU M H. Chaotic characteristic analysis of air traffic system[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2014, 31(6): 636-642. [8] WANG C, ZHENG X F, WANG L. Research on nonlinear characteristics of air traffic flows on converging air routes[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 171-178 (in Chinese). 王超, 郑旭芳, 王蕾. 交汇航路空中交通流的非线性特征研究[J]. 西南交通大学学报, 2017, 52(1): 171-178. [9] WANG F. Nonlinear fractal characteristics of air traffic flow[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1147-1154 (in Chinese). 王飞. 空中交通流非线性分形特征[J]. 西南交通大学学报, 2019, 54(6): 1147-1154. [10] WANG F. Empirical analysis on air traffic flow long phase correlation based on Hurst exponent[J]. Journal of Civil Aviation University of China, 2019, 37(2): 1-4 (in Chinese). 王飞. 基于Hurst指数的空中交通流长相关性实证分析[J]. 中国民航大学学报, 2019, 37(2): 1-4. [11] YANG Y. Research on short term forecasting method of air traffic flow[D]. Tianjin: Civil Aviation University of China, 2017: 33-41 (in Chinese). 杨阳. 空中交通流量短期预测方法研究[D]. 天津: 中国民航大学, 2017: 33-41. [12] WANG C, ZHU M, ZHAO Y D. Air traffic flow prediction model based on improved adding-weighted one-rank local-region method[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 206-213 (in Chinese). 王超, 朱明, 赵元棣. 基于改进加权一阶局域法的空中交通流量预测模型[J]. 西南交通大学学报, 2018, 53(1): 206-213. [13] YANG J. Research on the method of forecast the stock price based on fractal market[D]. Changsha: National University of Defense Technology, 2008: 23-35 (in Chinese). 杨剑. 基于分形市场的股票价格预测方法研究[D]. 长沙: 国防科学技术大学, 2008: 23-35. [14] DONG C S, MA L. A forecast model of stock index based on variable dimension fractal[J]. Journal of Liaoning Technical University (Natural Science), 2011, 30(5): 774-777 (in Chinese). 董春胜, 马玲. 基于变维分形的股票指数预测模型[J]. 辽宁工程技术大学学报(自然科学版), 2011, 30(5): 774-777. [15] LIU Q Z, XING Z. The consumer price index prediction based on fractal theory[J]. Henan Science, 2014, 32(4): 645-649 (in Chinese). 刘清志, 邢梓. 基于分形理论的居民消费价格指数预测[J]. 河南科学, 2014, 32(4): 645-649. [16] ZHU Z H, WU H W, WENG Z S, et al. Forecast of railway passenger and freight traffic volume based on fractal theory[J]. Railway Transport and Economy, 2011, 33(7): 80-84 (in Chinese). 朱子虎, 吴华稳, 翁振松, 等. 基于分形理论的铁路客货运量预测[J]. 铁道运输与经济, 2011, 33(7): 80-84. [17] FANG W Q, JIANG Y H, WEN J. Forecast air cargo volume by using the fractal theory[J]. Technology & Economy in Areas of Communications, 2009, 11(2): 105-106, 109 (in Chinese). 方文清, 蒋由辉, 文军. 分形理论用于航空货运量的预测[J]. 交通科技与经济, 2009, 11(2): 105-106, 109. [18] LI M, CHENG H Z, YANG Z L, et al. Improved forecasting method of typical daily load curve based on fractal interpolation[J]. Proceedings of the CSU-EPSA, 2015, 27(3): 36-41 (in Chinese). 李萌, 程浩忠, 杨宗麟, 等. 采用分形插值的典型日负荷曲线改进预测方法[J]. 电力系统及其自动化学报, 2015, 27(3): 36-41. [19] ZHAI M Y. A new method for short-term load forecasting based on fractal interpretation and wavelet analysis[J]. International Journal of Electrical Power & Energy Systems, 2015, 69: 241-245. [20] ZHANG H W, LU R Q, NIU Z G. Prediction method of urban daily water consumption based on fractional theory[J]. Journal of Tianjin University, 2009, 42(1): 56-59 (in Chinese). 张宏伟, 陆仁强, 牛志广. 基于分形理论的城市日用水量预测方法[J]. 天津大学学报, 2009, 42(1): 56-59. [21] MEI H B, WANG J, ZHANG H Z. Research of fractal forecasting algorithm of traffic flow on urban expressway[J]. Journal of Highway and Transportation Research and Development, 2009, 26(10): 105-110 (in Chinese). 梅宏标, 王坚, 张慧哲. 城市快速路交通流分形预测算法的研究[J]. 公路交通科技, 2009, 26(10): 105-110. [22] BARNSLEY M F, DEMKO S. Iterated function systems and the global construction of fractals[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1985, 399(1817): 243-275. [23] ZHANG W, CHEN K. Two fractal iterative algorithm in the application of short-term load forecasting[J]. Electrical Engineering, 2012(7): 11-14 (in Chinese). 张巍, 陈恳. 应用分形两种迭代算法作短期负荷预测[J]. 电气技术, 2012(7): 11-14. [24] TAO T, LIU S Q. Water demand forecasting method based on fractional theory[J]. Journal of Tongji University, 2004, 32(12): 1647-1650 (in Chinese). 陶涛, 刘遂庆. 基于分形理论的需水量预测方法[J]. 同济大学学报(自然科学版), 2004, 32(12): 1647-1650. [25] MAZEL D S, HAYES M H. Using iterated function systems to model discrete sequences[J]. IEEE Transactions on Signal Processing, 1992, 40(7): 1724-1734. [26] HE T, ZHOU Z O. Prediction of chaotic time series based on fractal self-affinity[J]. Acta Physica Sinica, 2007, 56(2): 693-700 (in Chinese). 贺涛, 周正欧. 基于分形自仿射的混沌时间序列预测[J]. 物理学报, 2007, 56(2): 693-700. [27] JIANG X. Chaos theory and data fusion based short-term prediction for traffic flow[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2016 (in Chinese). 蒋肖. 基于混沌理论和数据融合的短时交通流预测[D]. 重庆: 重庆邮电大学, 2016. |