[1] THUSOO R, JAIN S, BANGIA S. Quadrotors in the present era: A review[J]. Information Technology in Industry, 2021, 9(1): 164-178. [2] GHAZBI S N, AGHLI Y, ALIMOHAMMADI M, et al. Quadrotors unmanned aerial vehicles: A review[J]. International Journal on Smart Sensing and Intelligent Systems, 2016, 9(1): 309-333. [3] GUPTE S, MOHANDAS P I T, CONRAD J M. A survey of quadrotor unmanned aerial vehicles[C]//2012 Proceedings of IEEE Southeastcon. Piscataway: IEEE Press, 2012: 1-6. [4] MULGAONKAR Y, WHITZER M, MORGAN B, et al. Power and weight considerations in small, agile quadrotors[C]//Micro and Nanotechnology Sensors, Systems, and Applications Ⅵ. Baltimore: International Society for Optics and Photonics, 2014, 9083: 376-391. [5] MUSA S. Techniques for quadcopter modeling and design: A review[J]. Journal of Unmanned System Technology, 2018, 5(3): 66-75. [6] BOUABDALLAH S, MURRIERI P, SIEGWART R. Design and control of an indoor micro quadrotor[C]//IEEE International Conference on Robotics and Automation, 2004. Piscataway: IEEE Press, 2004: 4393-4398. [7] FANG Z, GAO W. Adaptive integral backstepping control of a micro-quadrotor[C]//2011 2nd International Conference on Intelligent Control and Information Processing, 2011, 2: 910-915. [8] BOUABDALLAH S, SIEGWART R. Backstepping and sliding-mode techniques applied to an indoor micro quadrotor[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2005: 2247-2252. [9] KUSHLEYEV A, MELLINGER D, POWERS C, et al. Towards a swarm of agile micro quadrotors[J]. Autonomous Robots, 2013, 35(4): 287-300. [10] AMIN R, LI A J, SHAMSHIRBAND S. A review of quadrotor UAV: control methodologies and performance evaluation[J]. International Journal of Automation and Control, 2016, 10(2): 87-103. [11] SIKKEL L N C, DE CROON G C H E, DE WAGTER C, et al. A novel online model-based wind estimation approach for quadrotor micro air vehicles using low cost MEMS IMUs[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2016: 2141-2146. [12] HU S F, MA J C, MENG F L. Research on the micro-inertial navigation system based on MEMS sensors[J]. Computer Measurement & Control, 2009, 17(5): 1015-1018 (in Chinese). 胡士峰, 马建仓, 孟凡路. 基于MEMS传感器的微惯性导航系统研究[J]. 计算机测量与控制, 2009, 17(5): 1015-1018. [13] NAGATY A, SAEEDI S, THIBAULT C, et al. Control and navigation framework for quadrotor helicopters[J]. Journal of Intelligent & Robotic Systems, 2013, 70(1): 1-12. [14] GHADIOK V, GOLDIN J, REN W. On the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotor[J]. Autonomous Robots, 2012, 33(1): 41-68. [15] DUNKLEY O, ENGEL J, STURM J, et al. Visual-inertial navigation for a camera-equipped 25 g nano-quadrotor[C]//IROS2014 Aerial Open Source Robotics Workshop, 2014. [16] SCHMID K, LUTZ P, TOMIC' T, et al. Autonomous vision-based micro air vehicle for indoor and outdoor navigation[J]. Journal of Field Robotics, 2014, 31(4): 537-570. [17] DRYANOVSKI I, VALENTI R G, XIAO J Z. An open-source navigation system for micro aerial vehicles[J]. Autonomous Robots, 2013, 34(3): 177-188. [18] MEHANOVIC D, BASS J, COURTEAU T, et al. Autonomous thrust-assisted perching of a fixed-wing UAV on vertical surfaces[C]//Conference on Biomimetic and Biohybrid Systems, 2017: 302-314. [19] MOORE J, CORY R, TEDRAKE R. Robust post-stall perching with a simple fixed-wing glider using LQR-Trees[J]. Bioinspiration & Biomimetics, 2014, 9(2): 025013. [20] THOMAS J, POPE M, LOIANNO G, et al. Aggressive flight with quadrotors for perching on inclined surfaces[J]. Journal of Mechanisms and Robotics, 2016, 8(5): 051007. [21] DESBIENS A L, CUTKOSKY M R. Landing and perching on vertical surfaces with microspines for small unmanned air vehicles[J]. Journal of Intelligent and Robotic Systems, 2010, 57(1): 313-327. [22] KALANTARI A, MAHAJAN K, RUFFATTO D, et al. Autonomous perching and take-off on vertical walls for a quadrotor micro air vehicle[C]//2015 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2015: 4669-4674. [23] MELLINGER D, SHOMIN M, KUMAR V. Control of quadrotors for robust perching and landing[C]//Proceedings of the International Powered Lift Conference, 2010: 205-225. [24] POPE M T, CUTKOSKY M R. Thrust-assisted perching and climbing for a bioinspired UAV[C]//Conference on Biomimetic and Biohybrid Systems, 2016: 288-296. [25] POPE M T, KIMES C W, JIANG H, et al. A multimodal robot for perching and climbing on vertical outdoor surfaces[J]. IEEE Transactions on Robotics, 2017, 33(1): 38-48. [26] HAWKES E W, CHRISTENSEN D L, EASON E V, et al. Dynamic surface grasping with directional adhesion[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2013: 5487-5493. [27] WOPEREIS H W, VAN DER MOLEN T D, POST T H, et al. Mechanism for perching on smooth surfaces using aerial impacts[C]//2016 IEEE International Symposium on Safety, Security, and Rescue Robotics. Piscataway: IEEE Press, 2016: 154-159. [28] WOPEREIS H W, ELLERY D H, POST T H, et al. Autonomous and sustained perching of multirotor platforms on smooth surfaces[C]//2017 25th Mediterranean Conference on Control and Automation (MED). Piscataway: IEEE Press, 2017: 1385-1391. [29] THOMAS J, LOIANNO G, POPE M, et al. Planning and control of aggressive maneuvers for perching on inclined and vertical surfaces[C]//Proceedings of ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2016. [30] MELLINGER D, MICHAEL N, KUMAR V. Trajectory generation and control for precise aggressive maneuvers with quadrotors[J]. The International Journal of Robotics Research, 2012, 31(5): 664-674. |