1 |
BENAVIDES J V, KANESHIGE J, SHARMA S, et al. Implementation of a trajectory prediction function for trajectory based operations: AIAA-2014-2198[R]. Reston: AIAA, 2014.
|
2 |
张洪海, 汤一文, 许炎. TBO模式下终端区进场交通流优化模型与仿真分析[J]. 航空学报, 2020, 41(7): 323844.
|
|
ZHANG H H, TANG Y W, XU Y. Optimizing arrival traffic flow in airport terminal airspace under trajectory based operations[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 323844 (in Chinese).
|
3 |
杨磊, 李文博, 刘芳子, 等. 柔性空域结构下连续下降航迹多目标优化[J]. 航空学报, 2021, 42(2): 324157.
|
|
YANG L, LI W B, LIU F Z, et al. Multi-objective optimization of continuous descending trajectories in flexible airspace[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 324157 (in Chinese).
|
4 |
张军峰, 蒋海行, 武晓光, 等. 基于BADA及航空器意图的四维航迹预测[J]. 西南交通大学学报, 2014, 49(3): 553-558.
|
|
ZHANG J F, JIANG H H, WU X G, et al. 4D trajectory prediction based on BADA and aircraft intent[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 553-558 (in Chinese).
|
5 |
Coppenbarger R A, Kanning G, Salcido R. Real-time data link of aircraft parameters to the center-TRACON automation system (CTAS)[C]∥4th USA/Europe ATM R&D Seminar. Stamford: ATM, 2001: 1-11.
|
6 |
WICKRAMASINGHE N K, BROWN M, MIYAMOTO Y, et al. Effects of aircraft mass and weather data errors on trajectory optimization and benefits estimation: AIAA-2016-0166[R]. Reston: AIAA, 2016.
|
7 |
THIPPHAVONG D P, SCHULTZ C A, LEE A, et al. Adaptive algorithm to improve trajectory prediction accuracy of climbing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2012, 36(1): 15-24.
|
8 |
吕波, 王超. 改进的扩展卡尔曼滤波在航空器4D航迹预测算法中的应用[J]. 计算机应用, 2021, 41(S1): 277-282.
|
|
LYU B, WANG C. Application of improved extended Kalman filtering in aircraft 4D trajectory prediction algorithm[J]. Journal of Computer Applications, 2021, 41(S1): 277-282 (in Chinese).
|
9 |
康南, 韩孝兰, 胡杨, 等. 基于质量估算策略的离场飞机高度剖面预测[J]. 中国民航大学学报, 2019, 37(3): 11-16.
|
|
KANG N, HAN X L, HU Y, et al. Departure aircraft altitude profile prediction based on aircraft mass estimation strategy[J]. Journal of Civil Aviation University of China, 2019, 37(3): 11-16 (in Chinese).
|
10 |
SCHULTZ C, THIPPHAVONG D, ERZBERGER H, et al. Adaptive trajectory prediction algorithm for climbing flights: AIAA-2012-4931[R]. Reston: AIAA, 2012.
|
11 |
ALLIGIER R, GIANAZZA D, HAMED M G, et al. Comparison of two ground-based mass estimation methods on real data (regular paper): hal-0100240[R]. Stamford: ATM, 2014.
|
12 |
SUN J Z, ELLERBROEK J, HOEKSTRA J M. Aircraft initial mass estimation using Bayesian inference method[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 59-73.
|
13 |
CHATI Y S, BALAKRISHNAN H. Modeling of aircraft takeoff weight using Gaussian processes[J]. Journal of Air Transportation, 2018, 26(2): 70-79.
|
14 |
ALLIGIER R, GIANAZZA D, DURAND N. Machine learning and mass estimation methods for ground-based aircraft climb prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 3138-3149.
|
15 |
ALLIGIER R, GIANAZZA D. Learning aircraft operational factors to improve aircraft climb prediction: A large scale multi-airport study[J]. Transportation Research Part C: Emerging Technologies, 2018, 96: 72-95.
|
16 |
SEMKE W, ALLEN N, TABASSUM A, et al. Analysis of radar and ADS-B influences on aircraft detect and avoid (DAA) systems[J]. Aerospace, 2017, 4(3): 49.
|
17 |
ALI B S, TAIB N A. A study on geometric and barometric altitude data in automatic dependent surveillance broadcast (ADS-B) messages[J]. Journal of Navigation, 2019, 72(5): 1140-1158.
|
18 |
Zhang M, Huang Q W, Liu S H, et al. Fuel consumption model of the climbing phase of departure aircraft based on flight data analysis[J]. Sustainability, 2019, 11(16): 4362.
|
19 |
赵军, 唐弋棣. 基于QAR数据的民航发动机性能分析[J]. 计算机仿真, 2020, 37(7): 107-112.
|
|
ZHAO J, TANG Y D. Performance analysis of civil aviation engine based on QAR data[J]. Computer Simulation, 2020, 37(7): 107-112 (in Chinese).
|
20 |
王兵, 张颖, 谢华, 等. 一种基于机载数据的民用航空器飞行阶段划分方法[J]. 交通运输工程学报, 2022, 22(1): 216-228.
|
|
WANG B, ZHANG Y, XIE H, et al. A flight phase identification method based on airborne data of civil aircraft[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 216-228 (in Chinese).
|
21 |
王兵. ADS-B历史飞行轨迹数据清洗方法[J]. 交通运输工程学报, 2020, 20(4): 217-226.
|
|
WANG B. Data cleaning method of ADS-B historical flight trajectories[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 217-226 (in Chinese).
|
22 |
COURCHELLE V, SOLER M, GONZÁLEZ-ARRIBAS D, et al. A simulated annealing approach to 3D strategic aircraft deconfliction based on en-route speed changes under wind and temperature uncertainties[J]. Transportation Research Part C: Emerging Technologies, 2019, 103: 194-210.
|
23 |
BAKLACIOGLU T. Modeling the fuel flow-rate of transport aircraft during flight phases using genetic algorithm-optimized neural networks[J]. Aerospace Science and Technology, 2016, 49: 52-62.
|
24 |
MURRIETA-MENDOZA A, HAMY A, BOTEZ R M. Four- and three-dimensional aircraft reference trajectory optimization inspired by ant colony optimization[J]. Journal of Aerospace Information Systems, 2017, 14(11): 597-616.
|
25 |
BI J, WU Z, WANG L, et al. A tabu search-based algorithm for airport gate assignment: A case study in Kunming, China[J]. Journal of Advanced Transportation, 2020, 2020: 1-13.
|
26 |
温瑞英, 李璐, 魏志强. 基于遗传算法的分段多参气动阻力研究[J]. 飞行力学, 2021, 39(2): 27-32, 44.
|
|
WEN R Y, LI L, WEI Z Q. Research on piecewise multi-parameter aerodynamic resistance based on genetic algorithm[J]. Flight Dynamics, 2021, 39(2): 27-32, 44 (in Chinese).
|