[1] |
ERTURK A, RENNO J M, INMAN D J. Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(5):529-544.
|
[2] |
刘莉, 杜孟尧, 张晓辉, 等. 太阳能/氢能无人机总体设计与能源管理策略研究[J]. 航空学报, 2016, 37(1):144-162. LIU L, DU M Y, ZHANG X H, et al. Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):144-162(in Chinese).
|
[3] |
WANG Y, INMAN D J. Simultaneous energy harvesting and gust alleviation for a multifunctional composite wing spar using reduced energy control via piezoceramics[J]. Journal of Composite Materials, 2013, 47(1):125-146.
|
[4] |
JUNG H J, KIM I H, JANG S J. An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node[J]. Smart Materials and Structures, 2011, 20(7):075001.
|
[5] |
ZHAO D, EGA E. Energy harvesting from self-sustained aeroelastic limit cycle oscillations of rectangular wings[J]. Applied Physics Letters, 2014, 105(10):103903.
|
[6] |
De MARQUI Jr C, ERTURK A, INMAN D J. Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(10):983-993.
|
[7] |
ERTURK A, VIEIRA W G R, De MARQUI Jr C, et al. On the energy harvesting potential of piezoaeroelastic systems[J]. Applied Physics Letters, 2010, 96(18):184103.
|
[8] |
ABDELKEFI A, GHOMMEM M. Piezoelectric energy harvesting from morphing wing motions for micro air vehicles[J]. Theoretical and Applied Mechanics Letters, 2013, 3(5):052004.
|
[9] |
BRYANT M, GARCIA E. Modeling and testing of a novel aeroelastic flutter energy harvester[J]. Journal of Vibration and Acoustics, 2011, 133(1):011010.
|
[10] |
XIANG J, WU Y, LI D. Energy harvesting from the discrete gust response of a piezoaeroelastic wing:Modeling and performance evaluation[J]. Journal of Sound and Vibration, 2015, 343:176-193.
|
[11] |
STANTON S C, MCGEHEE C C, MANN B P. Nonlinear dynamics for broadband energy harvesting:Investigation of a bistable piezoelectric inertial generator[J]. Physica D:Nonlinear Phenomena, 2010, 239(10):640-653.
|
[12] |
ZHOU S, CAO J, WANG W, et al. Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration[J]. Smart Materials and Structures, 2015, 24(5):055008.
|
[13] |
TANG L, YANG Y, SOH C K. Improving functionality of vibration energy harvesters using magnets[J]. Journal of Intelligent Material Systems & Structures, 2012, 23(13):1433-1449.
|
[14] |
LI K, YANG Z, GU Y, et al. Nonlinear magnetic-coupled flutter-based aeroelastic energy harvester:modeling, simulation and experimental verification[J]. Smart Materials and Structures, 2018, 28(1):015020.
|
[15] |
ALHADIDI A H, ABDERRAHMANE H A, DAQAQ M F, et al. Exploiting stiffness nonlinearities to improve flow energy capture from the wake of a bluff body[J]. Physica D:Nonlinear Phenomena, 2016:30-42.
|
[16] |
ZHANG L B, ABDELKEFI A, DAI H, et al. Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations[J]. Journal of Sound and Vibration, 2017, 408:210-219.
|
[17] |
ZHOU Z, QIN W, ZHU P, et al. Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings[J]. Energy, 2018, 153:400-412.
|
[18] |
COTTONE F, VOCCA H, GAMMAITONI L. Nonlinear energy harvesting[J]. Physical Review Letters, 2009, 102(8):080601.
|
[19] |
LAN C, QIN W. Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester[J]. Mechanical Systems and Signal Processing, 2017:71-81.
|
[20] |
刘祥建, 陈仁文. Rainbow型压电单膜片换能结构负载电压和输出功率分析[J]. 航空学报, 2011, 32(3):561-570. LIU X J, CHEN R W. Analysis of load voltage and output power for rainbow shape piezoelectric monomorph energy transferring elements[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3):561-570(in Chinese).
|
[21] |
WANG H, TANG L. Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling[J]. Mechanical Systems and Signal Processing, 2017, 86:29-39.
|
[22] |
ABDELKEFI A, NAYFEH A H, HAJJ M R. Design of piezoaeroelastic energy harvesters[J]. Nonlinear Dynamics, 2012, 68(4):519-530.
|
[23] |
LI K, YANG Z, ZHOU S. Performance enhancement for a magnetic-coupled bi-stable flutter-based energy harvester[J]. Smart Materials and Structures, 2020,29(8):085045.
|