1 |
HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49 (3): 357-393.
|
2 |
BILLET G, LOUEDIN O. Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows[J]. Journal of Computational Physics, 2001, 170(1): 161-183.
|
3 |
KRAVCHENKO A G, MOIN P. Numerical studies of flow over a circular cylinder at ReD =3900[J]. Physics of Fluids, 2000, 12(2): 403-417.
|
4 |
XIAO Z X, LIU J, HUANG J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5): 1119-1136.
|
5 |
SCIACOVELLI L, PASSIATORE D, CINNELLA P, et al. Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[J]. Computers & Fluids, 2021, 230: 105134.
|
6 |
WANG Z J, FIDKOWSKI K, ABGRALL R, et al. High-order CFD methods: Current status and perspective[J]. International Journal for Numerical Methods in Fluids, 2013, 72(8): 811-845.
|
7 |
DONG Y D, DENG X G, XU D, et al. Reevaluation of high-order finite difference and finite volume algorithms with freestream preservation satisfied[J]. Computers & Fluids, 2017, 156: 343-352.
|
8 |
JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
|
9 |
HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III[J]. Journal of Computational Physics, 1997, 131(1): 3-47.
|
10 |
BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211.
|
11 |
QIU J X, SHU C W. On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes[J]. Journal of Computational Physics, 2002, 183(1): 187-209.
|
12 |
HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207(2): 542-567.
|
13 |
ACKER F, DE R BORGES R B, COSTA B. An improved WENO-Z scheme[J]. Journal of Computational Physics, 2016, 313: 726-753.
|
14 |
LUO X, WU S P. An improved WENO-Z+ scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2021, 445: 110608.
|
15 |
刘博, 李诗尧, 陈嘉禹, 等. 基于映射函数的新型五阶WENO格式[J]. 航空学报, 2022, 43(12): 126155.
|
|
LIU B, LI S Y, CHEN J Y, et al. New fifth order WENO scheme based on mapping functions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126155 (in Chinese).
|
16 |
GEROLYMOS G A, SÉNÉCHAL D, VALLET I. Very-high-order WENO schemes [J]. Journal of Computational Physics, 2009, 228(23): 8481-8524.
|
17 |
JOHNSEN E, LARSSON J, BHAGATWALA A V, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J]. Journal of Computational Physics, 2010, 229(4): 1213-1237.
|
18 |
DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44.
|
19 |
DENG X G, MAEKAWA H. Compact high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 1997, 130(1): 77-91.
|
20 |
DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4): 1100-1115.
|
21 |
DENG X G, MIN Y B, MAO M L, et al. Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239: 90-111.
|
22 |
毛枚良, 姜屹, 闵耀兵, 等. 高阶精度有限差分方法几何守恒律研究进展[J]. 空气动力学学报, 2021, 39(1): 157-167.
|
|
MAO M L, JIANG Y, MIN Y B, et al. A survey of geometry conservation law for high-order finite difference method[J]. Acta Aerodynamica Sinica, 2021, 39(1): 157-167 (in Chinese).
|
23 |
王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015, 36(9): 2923-2929.
|
|
WANG Y T, SUN Y, WANG G X, et al. High-order accuracy numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2923-2929 (in Chinese).
|
24 |
王运涛, 孙岩, 孟德虹, 等. CRM翼/身/平尾组合体模型高阶精度数值模拟[J]. 航空学报, 2016, 37(12): 3692-3697.
|
|
WANG Y T, SUN Y, MENG D H, et al. High-order precision numerical simulation of CRM wing/body/horizontal tail model[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3692-3697 (in Chinese).
|
25 |
FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simulations[J]. Journal of Computational Physics, 2016, 305: 333-359.
|
26 |
HAIMOVICH O, FRANKEL S H. Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method[J]. Computers & Fluids, 2017, 146: 105-116.
|
27 |
YE C C, ZHANG P J Y, WAN Z H, et al. An alternative formulation of targeted ENO scheme for hyperbolic conservation laws[J]. Computers & Fluids, 2022, 238: 105368.
|
28 |
TAKAGI S, FU L, WAKIMURA H, et al. A novel high-order low-dissipation TENO-THINC scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2022, 452: 110899.
|
29 |
FU L, HU X Y, ADAMS N A. A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2018, 374: 724-751.
|
30 |
FU L, HU X Y, ADAMS N A. Improved five- and six-point targeted essentially nonoscillatory schemes with adaptive dissipation[J]. AIAA Journal, 2019, 57(3): 1143-1158.
|
31 |
PENG J, LIU S P, LI S Y, et al. An efficient targeted ENO scheme with local adaptive dissipation for compressible flow simulation[J]. Journal of Computational Physics, 2021, 425: 109902.
|
32 |
HAMZEHLOO A, LUSHER D J, LAIZET S, et al. On the performance of WENO/TENO schemes to resolve turbulence in DNS/LES of high-speed compressible flows[J]. International Journal for Numerical Methods in Fluids, 2021, 93(1): 176-196.
|
33 |
DE VANNA F, BALDAN G, PICANO F, et al. Effect of convective schemes in wall-resolved and wall-modeled LES of compressible wall turbulence[J]. Computers & Fluids, 2023, 250: 105710.
|
34 |
HIEJIMA T. A high-order weighted compact nonlinear scheme for compressible flows[J]. Computers & Fluids, 2022, 232: 105199.
|
35 |
涂国华, 邓小刚, 毛枚良. 5阶非线性WCNS和WENO差分格式频谱特性比较[J]. 空气动力学学报, 2012, 30(6): 709-712.
|
|
TU G H, DENG X G, MAO M L. Spectral property comparison of fifth-order nonlinear WCNS and WENO difference schemes[J]. Acta Aerodynamica Sinica, 2012, 30(6): 709-712 (in Chinese).
|
36 |
赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学, 2020, 42(2): 210-219.
|
|
ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science, 2020, 42(2): 210-219 (in Chinese).
|
37 |
CHOUDHARI M M, LOCKARD D P. Assessment of slat noise predictions for 30P30N high-lift configuration from BANC-III workshop[C]∥ Proceedings of the 21st AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2015.
|
38 |
HAN X S, KRAJNOVIĆ S. An efficient very large eddy simulation model for simulation of turbulent flow[J]. International Journal for Numerical Methods in Fluids, 2013, 71(11): 1341-1360.
|
39 |
HAN X S, KRAJNOVIĆ S. Very-large-eddy simulation based on k-ω model[J]. AIAA Journal, 2015, 53(4): 1103-1108.
|
40 |
HAN X S, KRAJNOVIĆ S. Validation of a novel very large eddy simulation method for simulation of turbulent separated flow[J]. International Journal for Numerical Methods in Fluids, 2013, 73(5): 436-461.
|
41 |
MIN Y B, WU W C, ZHANG H D, et al. Self-adaptive turbulence eddy simulation of flow control for drag reduction around a square cylinder with an upstream rod[J]. European Journal of Mechanics-B/Fluids, 2023, 100: 185-201.
|
42 |
PASCIONI K, CATTAFESTA L N, CHOUDHARI M M. An experimental investigation of the 30P30N multi-element high-lift airfoil[C]∥ Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2014.
|