Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (8): 129052-129052.doi: 10.7527/S1000-6893.2023.29052
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Wenchang WU1, Yankai MA2, Xingsi HAN1, Yaobing MIN2(), Zhenguo YAN2
Received:
2023-05-29
Revised:
2023-06-29
Accepted:
2023-07-13
Online:
2024-04-25
Published:
2023-07-14
Contact:
Yaobing MIN
E-mail:minyb@126.com
Supported by:
CLC Number:
Wenchang WU, Yankai MA, Xingsi HAN, Yaobing MIN, Zhenguo YAN. Smooth TENO nonlinear weighting for WCNS scheme[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 129052-129052.
1 | HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49 (3): 357-393. |
2 | BILLET G, LOUEDIN O. Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows[J]. Journal of Computational Physics, 2001, 170(1): 161-183. |
3 | KRAVCHENKO A G, MOIN P. Numerical studies of flow over a circular cylinder at ReD =3900[J]. Physics of Fluids, 2000, 12(2): 403-417. |
4 | XIAO Z X, LIU J, HUANG J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5): 1119-1136. |
5 | SCIACOVELLI L, PASSIATORE D, CINNELLA P, et al. Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[J]. Computers & Fluids, 2021, 230: 105134. |
6 | WANG Z J, FIDKOWSKI K, ABGRALL R, et al. High-order CFD methods: Current status and perspective[J]. International Journal for Numerical Methods in Fluids, 2013, 72(8): 811-845. |
7 | DONG Y D, DENG X G, XU D, et al. Reevaluation of high-order finite difference and finite volume algorithms with freestream preservation satisfied[J]. Computers & Fluids, 2017, 156: 343-352. |
8 | JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. |
9 | HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III[J]. Journal of Computational Physics, 1997, 131(1): 3-47. |
10 | BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211. |
11 | QIU J X, SHU C W. On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes[J]. Journal of Computational Physics, 2002, 183(1): 187-209. |
12 | HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207(2): 542-567. |
13 | ACKER F, DE R BORGES R B, COSTA B. An improved WENO-Z scheme[J]. Journal of Computational Physics, 2016, 313: 726-753. |
14 | LUO X, WU S P. An improved WENO-Z+ scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2021, 445: 110608. |
15 | 刘博, 李诗尧, 陈嘉禹, 等. 基于映射函数的新型五阶WENO格式[J]. 航空学报, 2022, 43(12): 126155. |
LIU B, LI S Y, CHEN J Y, et al. New fifth order WENO scheme based on mapping functions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126155 (in Chinese). | |
16 | GEROLYMOS G A, SÉNÉCHAL D, VALLET I. Very-high-order WENO schemes [J]. Journal of Computational Physics, 2009, 228(23): 8481-8524. |
17 | JOHNSEN E, LARSSON J, BHAGATWALA A V, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J]. Journal of Computational Physics, 2010, 229(4): 1213-1237. |
18 | DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44. |
19 | DENG X G, MAEKAWA H. Compact high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 1997, 130(1): 77-91. |
20 | DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4): 1100-1115. |
21 | DENG X G, MIN Y B, MAO M L, et al. Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239: 90-111. |
22 | 毛枚良, 姜屹, 闵耀兵, 等. 高阶精度有限差分方法几何守恒律研究进展[J]. 空气动力学学报, 2021, 39(1): 157-167. |
MAO M L, JIANG Y, MIN Y B, et al. A survey of geometry conservation law for high-order finite difference method[J]. Acta Aerodynamica Sinica, 2021, 39(1): 157-167 (in Chinese). | |
23 | 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015, 36(9): 2923-2929. |
WANG Y T, SUN Y, WANG G X, et al. High-order accuracy numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2923-2929 (in Chinese). | |
24 | 王运涛, 孙岩, 孟德虹, 等. CRM翼/身/平尾组合体模型高阶精度数值模拟[J]. 航空学报, 2016, 37(12): 3692-3697. |
WANG Y T, SUN Y, MENG D H, et al. High-order precision numerical simulation of CRM wing/body/horizontal tail model[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3692-3697 (in Chinese). | |
25 | FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simulations[J]. Journal of Computational Physics, 2016, 305: 333-359. |
26 | HAIMOVICH O, FRANKEL S H. Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method[J]. Computers & Fluids, 2017, 146: 105-116. |
27 | YE C C, ZHANG P J Y, WAN Z H, et al. An alternative formulation of targeted ENO scheme for hyperbolic conservation laws[J]. Computers & Fluids, 2022, 238: 105368. |
28 | TAKAGI S, FU L, WAKIMURA H, et al. A novel high-order low-dissipation TENO-THINC scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2022, 452: 110899. |
29 | FU L, HU X Y, ADAMS N A. A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2018, 374: 724-751. |
30 | FU L, HU X Y, ADAMS N A. Improved five- and six-point targeted essentially nonoscillatory schemes with adaptive dissipation[J]. AIAA Journal, 2019, 57(3): 1143-1158. |
31 | PENG J, LIU S P, LI S Y, et al. An efficient targeted ENO scheme with local adaptive dissipation for compressible flow simulation[J]. Journal of Computational Physics, 2021, 425: 109902. |
32 | HAMZEHLOO A, LUSHER D J, LAIZET S, et al. On the performance of WENO/TENO schemes to resolve turbulence in DNS/LES of high-speed compressible flows[J]. International Journal for Numerical Methods in Fluids, 2021, 93(1): 176-196. |
33 | DE VANNA F, BALDAN G, PICANO F, et al. Effect of convective schemes in wall-resolved and wall-modeled LES of compressible wall turbulence[J]. Computers & Fluids, 2023, 250: 105710. |
34 | HIEJIMA T. A high-order weighted compact nonlinear scheme for compressible flows[J]. Computers & Fluids, 2022, 232: 105199. |
35 | 涂国华, 邓小刚, 毛枚良. 5阶非线性WCNS和WENO差分格式频谱特性比较[J]. 空气动力学学报, 2012, 30(6): 709-712. |
TU G H, DENG X G, MAO M L. Spectral property comparison of fifth-order nonlinear WCNS and WENO difference schemes[J]. Acta Aerodynamica Sinica, 2012, 30(6): 709-712 (in Chinese). | |
36 | 赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学, 2020, 42(2): 210-219. |
ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science, 2020, 42(2): 210-219 (in Chinese). | |
37 | CHOUDHARI M M, LOCKARD D P. Assessment of slat noise predictions for 30P30N high-lift configuration from BANC-III workshop[C]∥ Proceedings of the 21st AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2015. |
38 | HAN X S, KRAJNOVIĆ S. An efficient very large eddy simulation model for simulation of turbulent flow[J]. International Journal for Numerical Methods in Fluids, 2013, 71(11): 1341-1360. |
39 | HAN X S, KRAJNOVIĆ S. Very-large-eddy simulation based on k-ω model[J]. AIAA Journal, 2015, 53(4): 1103-1108. |
40 | HAN X S, KRAJNOVIĆ S. Validation of a novel very large eddy simulation method for simulation of turbulent separated flow[J]. International Journal for Numerical Methods in Fluids, 2013, 73(5): 436-461. |
41 | MIN Y B, WU W C, ZHANG H D, et al. Self-adaptive turbulence eddy simulation of flow control for drag reduction around a square cylinder with an upstream rod[J]. European Journal of Mechanics-B/Fluids, 2023, 100: 185-201. |
42 | PASCIONI K, CATTAFESTA L N, CHOUDHARI M M. An experimental investigation of the 30P30N multi-element high-lift airfoil[C]∥ Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2014. |
[1] | ZHANG Hao, XIE Chunhui, DONG Yidao, WANG Dongfang, DENG Xiaogang. Constructing high-order finite difference scheme based on boundary variation diminishing principle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(S1): 726397-726397. |
[2] | WANG Yuntao, SUN Yan, WANG Guangxue, ZHANG Yulun, LI Wei. High-order accuracy numerical simulation of DLR-F6 wing-body configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(9): 2923-2929. |
[3] | WANG Yuntao, SUN Yan, WANG Guangxue, ZHANG Yulun, LI Song. Numerical analysis of the effect of discrete accuracy of turbulence model on numerical simulation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(5): 1453-1459. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 338
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341