ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (5): 126924-126924.doi: 10.7527/S10006893.2022.26924
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Huan ZHAO, Zhenghong GAO, Lu XIA()
Received:
2022-01-10
Revised:
2022-01-27
Accepted:
2022-02-21
Online:
2023-03-15
Published:
2023-03-15
Contact:
Lu XIA
E-mail:xialu@nwpu.edu.cn
Supported by:
CLC Number:
Huan ZHAO, Zhenghong GAO, Lu XIA. Aerodynamic shape design optimization method based on novel high⁃dimensional surrogate model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126924-126924.
1 | 赵欢. 基于代理模型的高效气动优化与气动稳健设计方法研究[D]. 西安: 西北工业大学, 2020. |
ZHAO H. Research on efficient surrogate-based aerodynamic optimization and robust aerodynamic design methods[D]. Xi’an :Northwestern Polytechnical, 2020 (in Chinese). | |
2 | 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报,2020, 41(3): 623344. |
HAN Z H, XU C Z, QIAO J L,et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623344 (in Chinese). | |
3 | HUANG J, GAO Z, ZHAO K,et al. Robust design of supercritical wing aerodynamic optimization considering fuselage interfering[J]. Chinese Journal of Aeronautics, 2010, 23(5): 523-528. |
4 | CHERNUKHIN O, ZINGG D W. Multimodality and global optimization in aerodynamic design[J]. AIAA Journal, 2013, 51(6): 1342-1354. |
5 | BONS N P, HE X L, MADER C A,et al. Multimodality in aerodynamic wing design optimization[J]. AIAA Journal, 2019, 57(3): 1004-1018. |
6 | POOLE D, ALLEN C, RENDALL T. Global optimization of wing aerodynamic optimization case exhibiting multimodality[J]. Journal of Aircraft, 2018, 55 (4): 1576-1591. |
7 | ZHAO H, GAO Z, GAO Y, et al. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty[J]. Aerospace Science and Technology, 2017, 68:530-542. |
8 | 赵欢,高 正红, 夏露. 高速自然层流翼型高效气动稳健优化设计方法研究[J]. 航空学报, 2021, 42(7): 124894. |
ZHAO H, GAO Z H, XIA L. Research on efficient robust aerodynamic design optimization method of high-speed and high-lift NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124894 (in Chinese). | |
9 | ZHAO H, GAO Z. Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles[J]. Engineering Computations, 2019, 36(3):971-996. |
10 | ZHAO H, GAO Z, XU F,et al. Review of robust aerodynamic design optimization for air vehicles[J]. Archives of Computational Methods in Engineering,2019,26(3):685-732. |
11 | ZHAO K, GAO Z, HUANG J,et al. Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method[J]. Chinese Journal of Aeronautics, 2016,29(6): 1541-1552. |
12 | QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences,2005, 41(1): 1-28. |
13 | ZHAO H, GAO Z, XU F, et al. An efficient adaptive forward⁃backward selection method for sparse polynomial chaos expansion[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 355: 456-491. |
14 | ZHAO H, GAO Z, XU F, et al. Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data[J]. Structural and Multidisciplinary Optimization, 2021, 64(2): 829-858. |
15 | LAURENCEAU J, SAGAUT P. Building efficient response surfaces of aerodynamic functions with kriging and cokriging[J]. AIAA Journal, 2008, 46(2): 498-507. |
16 | HAN Z H, ZHANG Y, SONG C X,et al. Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal, 2017, 55(12): 4330-4346. |
17 | GUO L, NARAYAN A, ZHOU T. A gradient enhanced ℓ1-minimization for sparse approximation of polynomial chaos expansions[J]. Journal of Computational Physics,2018, 367: 49-64. |
18 | SOBOL I M. Sensitivity estimates for nonlinear mathematical models[J]. Mathematical Modelling and Computational Experiments, 1993, 1(4): 407-414. |
19 | SHAN S, WANG G G. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions[J]. Structural and Multidisciplinary Optimization, 2010, 41(2): 219-241. |
20 | LI G, WANG S W, RABITZ H,et al.Global uncertainty assessments by high dimensional model representations(HDMR)[J]. Chemical Engineering Science, 2002, 57(21): 4445-4460. |
21 | ROY P C, DEB K. High dimensional model representation for solving expensive multi-objective optimization problems[C]∥ 2016 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2016. |
22 | DIEZ M, CAMPANA E F, STERN F. Design-space dimensionality reduction in shape optimization by Karhunen⁃Loève expansion[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1525-1544. |
23 | BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25(1):539-575. |
24 | MOHAMMADI A, RAISEE M. Efficient uncertainty quantification of stochastic heat transfer problems by combination of proper orthogonal decomposition and sparse polynomial chaos expansion[J]. International Journal of Heat Mass Transfer, 2019, 128: 581-600. |
25 | MOHAMMADI A, RAISEE M. Stochastic field representation using bi-fidelity combination of proper orthogonal decomposition and Kriging[J]. Computer Methods in Applied Mechanics and Engineering,2019,357:112589. |
26 | MAATEN V D L, POSTMA E, HERIK V D J. Dimensionality reduction:A comparative[J]. Journal of Machine Learning Research, 2009, 10 (66-71): 13. |
27 | CONSTANTINE P G, DOW E, WANG Q. Active subspace methods in theory and practice:Applications to kriging surfaces[J]. SIAM Journal on Scientific Computing,2014, 36(4): A1500-A1524. |
28 | GENG X, ZHAN D C, ZHOU Z H. Supervised nonlinear dimensionality reduction for visualization and classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2005, 35(6): 1098-1107. |
29 | LI J C, CAI J S, QU K. Surrogate-based aerodynamic shape optimization with the active subspace method[J]. Structural and Multidisciplinary Optimization, 2019, 59(2): 403-419. |
31 | TRIPATHY R K, BILIONIS I. Deep UQ:Learning deep neural network surrogate models for high dimensional uncertainty quantification[J]. Journal of Computational Physics, 2018, 375: 565-588. |
32 | GENEVA N, ZABARAS N. Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks[J]. Journal of Computational Physics, 2019,383: 125-147. |
33 | QIN T, WU K L, XIU D B. Data driven governing equations approximation using deep neural networks[J]. Journal of Computational Physics, 2019, 395: 620-635. |
34 | LYU Z, KENWAY G K W, MARTINS J R R A. Aerodynamic shape optimization investigations of the common research model wing benchmark[J]. AIAA Journal, 2015, 53(4): 968-985. |
35 | LIANG H Q, ZHU M, WU Z. Using cross-validation to design trend function in kriging surrogate modeling[J]. AIAA Journal, 2014, 52(10): 2313-2327. |
36 | LEDOUX S T, VASSBERG J C, YOUNG D P,et al. Study based on the AIAA aerodynamic design optimization discussion group test cases[J]. AIAA Journal, 2015,53(7): 1910-1935. |
37 | 赵欢, 高正红, 王超, 等. 适用于高速层流翼型的计算网格研究[J]. 应用力学学报, 2018, 35(2): 351-357, 454. |
ZHAO H, GAO Z H, WANG C,et al. Research on the computing grid of high speed laminar airfoil[J]. Chinese Journal of Applied Mechanics,2018, 35(2): 351-357,454 (in Chinese). | |
38 | HAN Z, XU C, ZHANG L, et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics, 2020, 33(1): 31-47. |
39 | ZHANG Y, HAN Z H, SHI L X,et al. Multi-round surrogate-based optimization for benchmark aerodynamic design problems[C]∥ 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
40 | ZHAO H, GUO Z H, XIA L. Efficient aerodynamic analysis and optimation under uncertainty using multi-fidelity polynomial chaos-Kriging surrogate model [J]. Computers & Fluids, 2022, 246: 105643. |
[1] | Huan ZHAO, Zhenghong GAO, Lu XIA. Novel multi-fidelity surrogate model assisted many-objective optimization method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 126962-126962. |
[2] | Haoge LI, Hua YANG, Yuxin YANG, Weifang CHEN. Refinement optimization design for heat reduction on windward surface of hypersonic lifting body [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 124-137. |
[3] | ZHANG Wei, GAO Zhenghong, ZHOU Lin, XIA Lu. Adaptive parameterization method for surrogate-based global optimization [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(10): 123815-123815. |
[4] | YUAN Weidong, GAO Zhan, LIU Haokang, MIU Guofeng. Topology optimization of composite shell damping structures based on improved optimal criteria method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 223162-223162. |
[5] | WANG Chao, GAO Zhenghong, ZHANG Wei, XIA Lu, HUANG Jiangtao. Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(7): 121745-121745. |
[6] | QIAO Jianling, HAN Zhonghua, SONG Wenping. An efficient surrogate-based global optimization for low sonic boom design [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(5): 121736-121736. |
[7] | SHAO Gan, ZHANG Shuguang, TANG Peng. HGAPSO: A new aerodynamic parameters identification algorithm for small unmanned aerial vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(4): 120365-120365. |
[8] | Huang Guoqiang;Nan Ying;Lu Yuping. Global Trajectory Optimization in Space Exploration by Low-thrust [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(7): 1366-1372. |
[9] | LUO Ya-zhong;TANG Guo-jin;LIANG Yan-gang. Decomposition Approach and Genetic Algorithm Based Global Optimizationof Launch Trajectory for Sun Synchronous Orbit [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2004, 25(5): 443-446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341