甘文彪1,2, 庄俊杰2, 向锦武2(), 左振杰2, 赵志杰3, 罗振兵3
收稿日期:
2024-01-02
修回日期:
2024-02-18
接受日期:
2024-04-16
出版日期:
2024-09-15
发布日期:
2024-04-30
通讯作者:
向锦武
E-mail:xiangjw@buaa.edu.cn
基金资助:
Wenbiao GAN1,2, Junjie ZHUANG2, Jinwu XIANG2(), Zhenjie ZUO2, Zhijie ZHAO3, Zhenbing LUO3
Received:
2024-01-02
Revised:
2024-02-18
Accepted:
2024-04-16
Online:
2024-09-15
Published:
2024-04-30
Contact:
Jinwu XIANG
E-mail:xiangjw@buaa.edu.cn
Supported by:
摘要:
高空太阳能无人机、平流层飞艇等临近空间低动态飞行器具有可持久飞行的潜能,在连续广域预警侦察、监视观测、应急响应、抢险救灾等军民用方面具有重要的应用价值。目前,由于高空稀薄大气条件、变高度越夜能耗需求等限制,低动态临近空间飞行器面临着低雷诺数螺旋桨多点工作效率不足的问题。近年来,随着控制元件能耗的降低和可靠性的提升,流动控制技术在螺旋桨增效方面的应用潜力凸显,论文梳理了临近空间低动态飞行器螺旋桨流动控制技术的研究进展。首先,回顾了临近空间低动态飞行器低雷诺数螺旋桨气动设计分析技术现状,明确了螺旋桨流动控制所需的气动分析基础;其次,结合变桨距和主被动控制原理,分析了桨叶后缘变形控制、桨尖小翼等螺旋桨被动控制研究现状;再者,从主动射流控制原理入手,介绍了螺旋桨等离子射流控制的进展;接着,阐述了协同射流螺旋桨增效控制研究现状及其局限性;然后,分析了螺旋桨合成双射流控制现状及其潜力情况;最后,总结了临近空间低动态飞行器螺旋桨流动控制研究面临的科学问题,并提出了可行的研究方向。
中图分类号:
甘文彪, 庄俊杰, 向锦武, 左振杰, 赵志杰, 罗振兵. 临近空间低动态飞行器螺旋桨流动控制研究进展[J]. 航空学报, 2024, 45(17): 530086.
Wenbiao GAN, Junjie ZHUANG, Jinwu XIANG, Zhenjie ZUO, Zhijie ZHAO, Zhenbing LUO. Research progress on flow control of propeller for low dynamic near⁃space vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530086.
1 | 黄伟, 陈逖, 罗世彬, 等. 临近空间飞行器研究现状分析[J]. 飞航导弹, 2007(10): 28-31. |
HUANG W, CHEN T, LUO S B, et al. Analysis of research status of near-space vehicles[J]. Winged Missiles Journal, 2007(10): 28-31 (in Chinese). | |
2 | 薛永江, 李体方. 临近空间飞行器发展及关键技术分析[J]. 飞航导弹, 2011(2): 32-36. |
XUE Y J, LI T F. Development of near spacecraft and analysis of its key technologies[J]. Aerodynamic Missile Journal, 2011(2): 32-36 (in Chinese). | |
3 | 黄宛宁, 张晓军, 李智斌, 等. 临近空间科学技术的发展现状及应用前景[J]. 科技导报, 2019, 37(21): 46-62. |
HUANG W N, ZHANG X J, LI Z B, et al. Development status and application prospect of near space science and technology[J]. Science & Technology Review, 2019, 37(21): 46-62 (in Chinese). | |
4 | 杜绵银, 陈培, 李广佳, 等. 临近空间低速飞行器螺旋桨技术[J]. 飞航导弹, 2011(7): 15-19, 28. |
DU M Y, CHEN P, LI G J, et al. Propeller technology of near-space low-speed aircraft[J]. Aerodynamic Missile Journal, 2011(7): 15-19, 28 (in Chinese). | |
5 | 刘沛清, 马利川, 段中喆, 等. 平流层飞艇螺旋桨相似准则分析与验证[J]. 北京航空航天大学学报, 2012, 38(7): 957-961. |
LIU P Q, MA L C, DUAN Z Z, et al. Study and verification on similarity theory for propellers of stratospheric airships[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7): 957-961 (in Chinese). | |
6 | 刘沛清, 马蓉, 段中喆, 等. 平流层飞艇螺旋桨地面风洞试验[J]. 航空动力学报, 2011, 26(8): 1775-1781. |
LIU P Q, MA R, DUAN Z Z, et al. Ground wind tunnel test study of the propeller of stratospheric airships[J]. Journal of Aerospace Power, 2011, 26(8): 1775-1781 (in Chinese). | |
7 | 王豪杰, 李杰, 付炜嘉, 等. 无人机螺旋桨气动力设计[J]. 应用力学学报, 2012, 29(4): 380-385, 483. |
WANG H J, LI J, FU W J, et al. Aerodynamic design of propeller for unmanned aerial vehicles[J]. Chinese Journal of Applied Mechanics, 2012, 29(4): 380-385, 483 (in Chinese). | |
8 | 李星辉, 李权, 张健. 太阳能无人机高效螺旋桨气动设计[J]. 航空工程进展, 2020, 11(2): 220-225, 238. |
LI X H, LI Q, ZHANG J. Aerodynamic design of a high efficient solar powered UAV propeller[J]. Advances in Aeronautical Science and Engineering, 2020, 11(2): 220-225, 238 (in Chinese). | |
9 | 焦俊, 宋笔锋, 张玉刚, 等. 高空飞艇螺旋桨优化设计与气动性能车载试验[J]. 航空动力学报, 2017, 32(1): 196-202. |
JIAO J, SONG B F, ZHANG Y G, et al. Optimal design and truck-mounted testing of aerodynamic performance for the propeller of high altitude airship[J]. Journal of Aerospace Power, 2017, 32(1): 196-202 (in Chinese). | |
10 | 李喜乐, 李广佳, 周波, 等. 一种新的临近空间螺旋桨地面试验方法[J]. 实验流体力学, 2015, 29(3): 87-92. |
LI X L, LI G J, ZHOU B, et al. A new ground test method for near space propeller[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 87-92 (in Chinese). | |
11 | 刘沛清, 耿欣, 胡天翔, 等. 现代航空螺旋桨气动、噪声与优化设计的研究进展[J]. 空气动力学学报, 2023, 41(10): 62-78, 61. |
LIU P Q, GENG X, HU T X, et al. Research progress on aerodynamics, noise and optimization design for modern aviation propellers[J]. Acta Aerodynamica Sinica, 2023, 41(10): 62-78, 61 (in Chinese). | |
12 | 宋翔, 余培汛, 白俊强, 等. 基于Hanson噪声模型的螺旋桨气动与噪声优化设计[J]. 西北工业大学学报, 2020, 38(4): 685-694. |
SONG X, YU P X, BAI J Q, et al. Aerodynamic and aeroacoustic optimization of propeller based on Hanson noise model[J]. Journal of Northwestern Polytechnical University, 2020, 38(4): 685-694 (in Chinese). | |
13 | MARINUS B G, ROGER M, VAN DEN BRAEMBUSS CHE R A, et al. Multidisciplinary optimization of propeller blades: Focus on the aeroacoustic results[C]∥ 17th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2011. |
14 | CANARD S, LE TALLEC C, BEAUMIER P, et al . ANIBAL: A new aero-acoustic optimized propeller for light aircraft applications[C]∥ 19th AIAA Aviation Technology, Integration and Operations Conference and Aircraft Noise and Emisions Reduction Symposium. Reston: AIAA, 2010. |
15 | 薛东文, 燕群, 陈永辉, 等. 飞机螺旋桨低噪声多学科优化设计与试验验证研究[J]. 推进技术, 2023, 44(7): 185-194. |
XUE D W, YAN Q, CHEN Y H, et al. Multi-disciplinary design and experimental verification of low noise aircraft propellers[J]. Journal of Propulsion Technology, 2023, 44(7): 185-194 (in Chinese). | |
16 | 口启慧, 王海峰, 江泓鑫, 等. 考虑气动-结构的高空螺旋桨多学科优化方法[J]. 航空动力学报, 2024, 39(4): 80-88. |
KOU Q H, WANG H F, JIANG H X, et al. Multi-disciplinary optimization method for high-altitude propellers considering aero-structure[J]. Journal of Aerospace Power, 2024, 39(4): 80-88 (in Chinese). | |
17 | 王科雷, 祝小平, 周洲, 等. 低雷诺数分布式螺旋桨滑流气动影响[J]. 航空学报, 2016, 37(9): 2669-2678. |
WANG K L, ZHU X P, ZHOU Z, et al. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2669-2678 (in Chinese). | |
18 | 王红波, 祝小平, 周洲, 等. 基于非定常面元/黏性涡粒子法的低雷诺数滑流气动干扰[J]. 航空学报, 2017, 38(4): 120412. |
WANG H B, ZHU X P, ZHOU Z, et al. Aerodynamic interactions at low Reynolds number slipstream with unsteady panel/viscous vortex particle method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 120412 (in Chinese). | |
19 | WANG H B, ZHU X P, ZHOU Z. Influence analysis of propeller location parameters on wings using a panel/viscous vortex particle hybrid method[J]. The Aeronautical Journal, 2018, 122: 21-41. |
20 | WANG H B, GAN W B, LI D C. An investigation of the aerodynamic performance for a fuel saving double channel wing configuration[J]. Energie, 2019, 12(20): 3911. |
21 | WANG H B, GAN W B, LI D C. An investigation of the aerodynamic performance for a propeller-aided lift-enhancing double wing configuration[J]. Aerospace Science and Technology, 2020, 105: 105991. |
22 | 甘文彪. 近空间低雷诺数无人机气动数值模拟及设计研究[D]. 西安: 西北工业大学, 2014. |
GAN W B. Research on aerodynamic numerical simulation and design of near space low-Reynolds unmanned aerial vehicles [D]. Xi’an: Northwestern Polytechnical University, 2014 (in Chinese). | |
23 | 甘文彪, 周洲, 许晓平. 仿生全翼式太阳能无人机气动数值模拟[J]. 航空学报, 2015, 36(10): 3284-3294. |
GAN W B, ZHOU Z, XU X P. Aerodynamic numerical simulation of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3284-3294 (in Chinese). | |
24 | 饶崇, 张铁军, 魏闯, 等. 一种分布式电动飞机螺旋桨滑流影响机理[J]. 航空学报, 2021, 42(S1): 157-167. |
RAO C, ZHANG T J, WEI C, et al. Influence mechanism of propeller slipstream of distributed electric aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 157-167 (in Chinese). | |
25 | 乔宇航, 马东立, 李陟. 螺旋桨/机翼相互干扰的非定常数值模拟[J]. 航空动力学报, 2015, 30(6): 1366-1373. |
QIAO Y H, MA D L, LI Z. Unsteady numerical simulation of propeller/wing interaction[J]. Journal of Aerospace Power, 2015, 30(6): 1366-1373 (in Chinese). | |
26 | BOUSQUET J M, GARDAREIN P. Improvements on computations of high speed propeller unsteady aerodynamics[J]. Aerospace Science and Technology, 2003, 7(6): 465-472. |
27 | STÜRMER A. Unsteady CFD simulations of propeller installation effects[C]∥ 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & AMP; Exhibit. Reston: AIAA, 2006. |
28 | STÜRMER A. Unsteady Euler and Navier-Stokes simulations of propellers with the unstructured DLR TAU-Code[C]∥ Proceeding of New Results in Numerical and Experimental Fluid Mechanics. Heidelberg: Springer Berlin Heidelberg, 2006: 144-151. |
29 | STÜRMER A, RAKOWITZ M. Unsteady simulation of a transport aircraft propeller using MEGAFLOW: RTO-MP-AVT-123[R]. Neuilly-sur-Seine: RTO, 2005. |
30 | CHRISTIE R J, DUBOIS A, AVIATION J, et al. Cooling of electric motors used for propulsion on SCEPTOR: NASATM-2017-219134[R]. Washington, D.C.: NASA, 2017. |
31 | BORER N, PATTERSON M D, VIKEN J, et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator[C]∥ 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016 |
32 | STOLL A M, BEVIRT J BEN, MOORE M D, et al. Drag reduction through distributed electric propulsion [C]∥ 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014. |
33 | PATTERSON M D, BORER N K. Approach considerations in aircraft with high-lift propeller systems[C]∥ 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017. |
34 | PATTERSON M D, DERLAGA J M, BORER N. High-lift propeller system configuration selection for NASA’s SCEPTOR distributed electric propulsion flight demonstrator[C]∥ 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016. |
35 | BURGER C, HARTFIELD R. Design, testing and optimization of a constant torque propeller: AIAA 2007-3927 [R]. Reston: AIAA, 2007. |
36 | SANDAK Y, ROSEN A. Aeroelastically adaptive propeller using blades’ root flexibility[J]. The Aeronautical Journal, 2004, 108: 411-418. |
37 | CONG K, MA D, ZHANG L,et al. Design and analysis of passive variable-pitch propeller for VTOL UAVs[J].Aerospace Science and Technology, 2023,108:108063. |
38 | 李国强, 宋奎辉, 易仕和, 等. 基于后缘小翼的翼型反流动态失速主动控制试验研究[J]. 力学学报, 2023, 55(11): 2453-2467. |
LI G Q, SONG K H, YI S H, et al. Test research for active control of airfoil reverse flow dynamic stall based on trailing edge flap[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2453-2467 (in Chinese). | |
39 | 刘士明. 带后缘小翼的智能旋翼振动载荷抑制研究[D]. 南京: 南京航空航天大学, 2016. |
LIU S M. Research on vibratory load control of smart rotor with trailing edge flaps[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese). | |
40 | 许成杰, 杨旭东, 朱敏. 临近空间桨梢小翼螺旋桨布局气动增效研究[J]. 航空计算技术, 2011, 41(5): 61-64. |
XU C J, YANG X D, ZHU M. Aerodynamic synergistic mechanism of high altitude proplet propeller configura tions[J]. Aeronautical Computing Technique, 2011, 41(5): 61-64 (in Chinese). | |
41 | 卫玉梁. 基于猫头鹰羽毛特征的无人机旋翼仿生降噪研究[D]. 合肥: 中国科学技术大学, 2022. |
WEI Y L. Research on bionic noise reduction of UAV propeller based on owl feather characteristics[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese). | |
42 | 陈晨. 主/被动控制方法抑制桨尖涡机理研究[D]. 厦门: 厦门大学, 2020. |
CHEN C. Study on the mechanism of controlling tip vortex by active and passive control[D]. Xiamen: Xiamen University, 2020 (in Chinese). | |
43 | 宋笔锋, 安伟刚. 智能螺旋桨发展现状及其在临近空间飞行器中的应用[J]. 航空工程进展, 2013, 4(4): 391-398, 406. |
SONG B F, AN W G. Survey on smart propeller and its applications in near-space propeller vehicle[J]. Advances in Aeronautical Science and Engineering, 2013, 4(4): 391-398, 406 (in Chinese). | |
44 | 姜家文, 田希晖, 车学科, 等. 不同激励模式临近空间螺旋桨等离子体流动控制试验研究[J]. 飞机设计, 2016, 36(6): 27-31. |
JIANG J W, TIAN X H, CHE X K, et al. Study on stratospheric propeller plasma flow control of different incentive model[J]. Aircraft Design, 2016, 36(6): 27-31 (in Chinese). | |
45 | 李国强, 聂万胜, 程钰锋, 等. 临近空间螺旋桨低雷诺数高效翼型数值分析[J]. 航空计算技术, 2012, 42(5): 46-50. |
LI G Q, NIE W S, CHENG Y F, et al. Numerical analysis of low Reynolds efficient airfoil in propeller in near space[J]. Aeronautical Computing Technique, 2012, 42(5): 46-50 (in Chinese). | |
46 | 李国强, 聂万胜, 程钰锋, 等. 临近空间螺旋桨气动性能数值分析[J]. 飞机设计, 2012, 32(6): 18-22. |
LI G Q, NIE W S, CHENG Y F, et al. The numerical study of propeller aerodynamics characteristic in near space[J]. Aircraft Design, 2012, 32(6): 18-22 (in Chinese). | |
47 | CHENG Y F, CHE X K, NIE W S. Numerical study on propeller flow-separation control by DBD-plasma aerodynamic actuation[J]. IEEE Transactions on Plasma Science, 2013, 41(4): 892-898. |
48 | 聂万胜, 程钰锋, 车学科. 介质阻挡放电等离子体流动控制研究进展[J]. 力学进展, 2012, 42(6): 722-734. |
NIE W S, CHENG Y F, CHE X K. A review on dielectric barrier discharge plasma flow control[J]. Advances in Mechanics, 2012, 42(6): 722-734 (in Chinese). | |
49 | WANG J J, CHOI K S, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62: 52-78. |
50 | MURPHY J P, KRIEGSEIS J, LAVOIE P. Scaling of maximum velocity, body force, and power consumption of dielectric barrier discharge plasma actuators via particle image velocimetry[J]. Journal of Applied Physics, 2013, 113(24): 243301-243310. |
51 | CORKE T, ENLOE C, WILKINSON S. Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanics, 2010,42: 505-529. |
52 | JOLIBOIS J, FORTE M, MOREAU É. Application of an AC barrier discharge actuator to control airflow separation above a NACA 0015 airfoil: Optimization of the actuation location along the chord[J]. Journal of Electrostatics, 2008, 66(9): 496-503. |
53 | LITTLE J, NISHIHARA M, ADAMOVICH I, et al. High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator[J]. Experiments in Fluids, 2010, 48(3): 521-537. |
54 | RIHERD M, ROY S, VISBAL M. Numerical investigation of serpentine plasma actuators for separation control at low Reynolds number[C]∥ 41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011. |
55 | BENARD N, JOLIBOIS J, MOREAU E. Lift and drag performances of an axisymmetric airfoil controlled by plasma actuator[J]. Journal of Electrostatics, 2009, 67(2/3): 133-139. |
56 | VISBAL M, GAITONDE D. Control of vortical flows using simulated plasma actuators[C]∥ Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
57 | MOREAU E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D Applied Physics, 2007, 40(3): 605-636. |
58 | 杨波, 孙敏, 白敏菂. 介质阻挡放电等离子体抑制翼型流动分离的实验研究[J]. 高电压技术, 2014, 40(1): 212-218. |
YANG B, SUN M, BAI M D. Experimental investigation of airfoil flow separation control by dielectric barrier discharge plasma actuator[J]. High Voltage Engineering, 2014, 40(1): 212-218 (in Chinese). | |
59 | 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. |
WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese). | |
60 | VO H D. Rotating stall suppression in axial compressors with casing plasma actuation[J]. Journal of Propulsion and Power, 2010, 26(4): 808-818. |
61 | 程钰锋, 聂万胜. 等离子体提高平流层螺旋桨气动性能的数值分析[J]. 核聚变与等离子体物理, 2012, 32(4): 372-378. |
CHENG Y F, NIE W S. Numerical analysis of the effect of plasma flow control on enhancing the aerodynamic characteristics of stratospheric screw propeller[J]. Nuclear Fusion and Plasma Physics, 2012, 32(4): 372-378 (in Chinese). | |
62 | 程钰锋, 聂万胜, 车学科. 等离子体提高螺旋桨桨根翼型气动性能的仿真研究[J]. 核聚变与等离子体物理, 2012, 32(3): 265-270. |
CHENG Y F, NIE W S, CHE X K. Numerical study on plasma flow control to enhance the aerodynamic characteristic of the aerofoil on propeller root region[J]. Nuclear Fusion and Plasma Physics, 2012, 32(3): 265-270 (in Chinese). | |
63 | 祝方正, 张睿, 程钰锋. 等离子体改善平流层螺旋桨气动性能仿真[J]. 飞机设计, 2022, 42(1): 15-20. |
ZHU F Z, ZHANG R, CHENG Y F. Numerical plasma flow control to enhance the aerodynamic characteristics of stratospheric screw propeller[J]. Aircraft Design, 2022, 42(1): 15-20 (in Chinese). | |
64 | 陈庆亚, 田希晖, 姜家文, 等. 螺旋桨等离子体流动控制的增效实验[J]. 航空动力学报, 2016, 31(5): 1205-1211. |
CHEN Q Y, TIAN X H, JIANG J W, et al. Experiment on the performance of propeller plasma flow control[J]. Journal of Aerospace Power, 2016, 31(5): 1205-1211 (in Chinese). | |
65 | 张立志, 李修乾, 陈庆亚, 等. 两种翼型螺旋桨ARA-D和S1223的等离子体增效实验研究[J]. 航天器环境工程, 2017, 34(1): 81-85. |
ZHANG L Z, LI X Q, CHEN Q Y, et al. Experimental study of the enhancement of plasma flow control of ARA-D and S1223 propeller airfoils[J]. Spacecraft Environment Engineering, 2017, 34(1): 81-85 (in Chinese). | |
66 | 许和勇, 马成宇. 协同射流流动控制方法研究进展综述[J]. 航空工程进展, 2022, 13(6): 1-16. |
XU H Y, MA C Y. Review of the co-flow jet flow control method[J]. Advances in Aeronautical Science and Engineering, 2022, 13(6): 1-16 (in Chinese). | |
67 | ZHA G C, PAXTON C. A novel airfoil circulation augment flow control method using co-flow jet[C]∥ 2nd AIAA Flow Control Conference. Reston: AIAA, 2004. |
68 | WANG B, ZHA G C. Detached-eddy simulation of a co-flow jet airfoil at high angle of attack[J]. Journal of Aircraft, 2011, 48(5): 1495-1502. |
69 | GAN W B, ZHOU Z, XU X P, et al. Delayed detached-eddy simulation and application of a co-flow jet airfoil at high angle of attack[J]. Applied Mechanics and Materials, 2013, 444-445: 270-276. |
70 | CARR D, KUPROWICZ N, ESTEVADEORDAL J, et al. Stator diffusion enhancement using a re-circulating co-flowing steady jet (postprint) [C]∥ Proceedings of the ASME Turbo Expo 2004. New York: ASME, 2004: 309-322. |
71 | LIU J Q, CHEN R Q, QIU R F, et al. Study on dynamic stall control of rotor airfoil based on co-flow jet[J]. International Journal of Aerospace Engineering, 2020(5): 8845924. |
72 | XU H Y, XING S L, YE Z Y. Numerical study of the S809 airfoil aerodynamic performance using a co-flow jet active control concept[J]. Journal of Renewable and Sustainable Energy, 2015, 7(2): 023131. |
73 | XU H Y, QIAO C L, YE Z Y. Dynamic stall control on the wind turbine airfoil via a co-flow jet[J]. Energies, 2016, 9: 429. |
74 | KHIER W, NAGEL W E, RESCH M, et al. Time-accurate versus actuator disk simulations of complete helicopters[C]∥ Proceeding of High Performance Computing in Science and Engineering. Berlin, Heidelberg: Springer-Verlag, 2006: 209-220. |
75 | LEFEBVRE A, ZHA G C. Numerical simulation of pitching airfoil performance enhancement using co-flow jet flow control [C]∥ 31st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2013. |
76 | LEFEBVRE A, ZHA G C. Pitching airfoil performance enhancement using co-flow jet flow control at high mach number[C]∥ 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
77 | ZHA G C, PAXTON C D, CONLEY C, et al. Effect of injection slot size on the performance of co-flow jet airfoil[J]. Journal of Aircraft, 2006, 43(4): 987-995. |
78 | ZHA G C, CARROLL B, PAXTON C D, et al. High performance airfoil using co-flow jet flow control[J]. AIAA Journal, 2005, 45(8):2087-2090. |
79 | YANG X D, JIANG W, ZHANG S L. Analysis of co-flow jet effect on dynamic stall characteristics applying to rotor airfoils[J]. IOP Conference Series: Materials Science and Engineering, 2019, 491: 012010. |
80 | 杨慧强, 许和勇, 叶正寅. 基于联合射流的翼型动态失速流动控制研究[J]. 航空工程进展, 2018, 9(4): 566-576. |
YANG H Q, XU H Y, YE Z Y. Study on the flow control of the airfoil dynamic stall using the co-flow jet[J]. Advances in Aeronautical Science and Engineering, 2018, 9(4): 566-576 (in Chinese). | |
81 | 杨慧强. 基于联合射流技术的流动控制方法研究[D]. 西安: 西北工业大学, 2018. |
Yang H Q. Numerical investigations of flow control method based on co-flow jet[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
82 | 朱敏, 杨旭东, 宋超, 等. 应用协同射流控制的临近空间螺旋桨高增效方法[J]. 航空学报, 2014, 35(6): 1549-1559. |
ZHU M, YANG X D, SONG C, et al. High synergy method for near space propeller using co-flow jet control[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1549-1559 (in Chinese). | |
83 | ZHANG S L, YANG X D, SONG B F, et al. Numerical and experimental study of the co-flow jet airfoil performance enhancement:AIAA-2017-1694[R]. Reston: AIAA, 2017. |
84 | LI B, ABBASI A A, SHIQING Y, et al. Airfoil performance enhancement with a novel flow control method of SDBD plasma co-flow jet[C]∥ AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
85 | LUO Z B, ZHAO Z J, DENG X, et al. Dual synthetic jets actuator and its applications-Part I: PIV measurements and comparison to synthetic jet actuator[J]. Actuators, 2022, 11(8): 205. |
86 | 崔龙泉, 周岩, 谢玮, 等. 等离子体合成射流激波-激波干扰控制数值模拟[J]. 空军工程大学学报, 2023, 24(2): 2-9. |
CUI L Q, ZHOU Y, XIE W, et al. A numerical simulation in control of shock-shock interference with hypersonic vehicle head by using plasma synthetic jet[J]. Journal of Air Force Engineering University, 2023, 24(2): 2-9 (in Chinese). | |
87 | EMERICK T, ALI M Y, FOSTER C, et al. SparkJet characterizations in quiescent and supersonic flowfields[J]. Experiments in Fluids, 2014, 55(12): 1858. |
88 | 周岩. 新型等离子体合成射流及其激波控制特性研究[D]. 长沙: 国防科技大学, 2018. |
ZHOU Y. Novel plasma synthetic jet and its application in shock wave control[D].Changsha: National University of Defense Technology, 2018 (in Chinese). | |
89 | JABBAL M, JEYALINGAM J. Towards the noise reduction of piezoelectrical-driven synthetic jet actuators[J]. Sensors and Actuators A: Physical, 2017, 266: 273-284. |
90 | HOHOLIS G, STEIJL R, BADCOCK K. Circulation control as a roll effector for unmanned combat aerial vehicles[J]. Journal of Aircraft, 2016, 53(6): 1875-1889. |
91 | DENG X, XIA Z X, LUO Z B, et al. Vector-adjusting characteristic of dual-synthetic-jet actuator[J]. AIAA Journal, 2015, 53(3): 794-797. |
92 | 王杰. 射流推力矢量技术的研究现状与发展[J]. 科技与创新, 2020(10): 81-83, 85. |
WANG J. Research status and development of jet thrust vector technology[J]. Science and Technology & Innovation, 2020(10): 81-83, 85 (in Chinese). | |
93 | MILLER D N, YAGLE P, HAMSTRA J W. Fluidic throat skewing for thrust vectoring in fixed-geometry nozzles[C]∥ 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999. |
94 | MASON M S, CROWTHER W. Fluidic thrust vectoring for low observable air vehicles[C]∥ AIAA Flow Control Conference, Reston: AIAA, 2004. |
95 | 顾蕴松, 李斌斌, 程克明. 基于主动流动控制的射流矢量偏转技术[J]. 实验力学, 2012, 27(1): 87-92. |
GU Y S, LI B B, CHENG K M. On the jet vector deflection based on active flow control technique[J]. Journal of Experimental Mechanics, 2012, 27(1): 87-92 (in Chinese). | |
96 | 曹永飞. 射流推力矢量控制[D]. 南京: 南京航空航天大学, 2012. |
CAO Y F. Fluidic thrust vector control[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
97 | 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科学技术大学, 2006. |
LUO Z B. Principle of synthetic jet and dual synthetic jets, and their applications in jet vectoring and micro-pump[D].Changsha: National University of Defense Technology, 2006 (in Chinese). | |
98 | LUO Z B, XIA Z X, LIU B. New generation of synthetic jet actuators[J]. AIAA Journal, 2006, 44(10): 2418-2419. |
99 | LUO Z B, XIA Z X, Xie Y G, et al. Jet vectoring control using a novel synthetic jet actuator[J]. Chinese Journal of Aeronautics, 2007, 20(3): 193-201. |
100 | 王俊伟, 夏智勋, 罗振兵, 等. 合成射流对高超声速进气道起动特性影响数值模拟研究[J]. 空气动力学学报, 2018, 36(4): 613-619. |
WANG J W, XIA Z X, LUO Z B, et al. Numerical study on starting characteristics of hypersonic inlet with synthetic jet[J]. Acta Aerodynamica Sinica, 2018, 36(4): 613-619 (in Chinese). | |
101 | 王林, 罗振兵, 夏智勋, 等. 合成双射流控制翼型分离流动的数值研究[J]. 空气动力学学报, 2012, 30(3): 353-357, 372. |
WANG L, LUO Z B, XIA Z X, et al. Numerical simulation of separated flow control on an airfoil using dual synthetic jets[J]. Acta Aerodynamica Sinica, 2012, 30(3): 353-357, 372 (in Chinese). | |
102 | SMITH B L, GLEZER A. Jet vectoring using synthetic jets[J]. Journal of Fluid Mechanics, 2002, 458: 1-34. |
103 | SARY G, DUFOUR G, ROGIER F, et al. Modeling and parametric study of a plasma synthetic jet for flow control[J]. AIAA Journal, 2014, 52(8): 1591-1603. |
104 | LAURENDEAU, CHEDEVERGNE, CASALIS. Transient ejection phase modeling of a plasma synthetic jet actuator[J]. Physics of Fluids, 2014, 26(12): 125101. |
105 | 李玉杰, 罗振兵, 邓雄, 等. 合成双射流控制NACA0015翼型大攻角流动分离试验研究[J]. 航空学报, 2016, 37(3): 817-825. |
LI Y J, LUO Z B, DENG X, et al. Experimental investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jet actuator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 817-825 (in Chinese). | |
106 | 邓雄, 赵志杰, 王秋旺, 等.基于前缘合成双射流的飞翼布局纵向气动控制特性研究[J].空气动力学学报[J], 2022, 40(5): 79-90. |
DENG X, ZHAO Z J, WANG Q W, et al. Research on longitudinal aerodynamic control characteristics of flying wing based on leading-edge dual synthetic jets[J].Acta Aerodynamica Sinica, 2022, 40(5): 79-90 (in Chinese). | |
107 | ZHAO Z J, DENG X, LUO Z B, et al. Flight control of a flying wing aircraft based on circulation control using synthetic jet actuators[J]. Chinese Journal of Aeronautics, 2023, 36(10): 152-164. |
108 | ZHAO Z J, LUO Z B, DENG X, et al. Effects of dual synthetic jets on longitudinal aerodynamic characteristics of a flying wing layout[J]. Aerospace Science and Technology, 2023, 132: 108043. |
109 | FORSTER M, STEIJL R. Numerical simulation of transonic circulation control:AIAA 2015-1709[R]. Reston: AIAA, 2015. |
110 | ENGLAR R J, HUSON G G. Development of advanced circulation control wing high-lift airfoils[J]. Journal of Aircraft, 1984, 21(7): 476-483. |
111 | ENGLAR R J, JONES G S, ALLAN B G, et al. 2-D circulation control airfoil benchmark experiments intended for CFD code validation[C]∥ 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
112 | LIU Y, SANKAR L N, ENGLAR R J, et al. Computational evaluation of the steady and pulsed jet effects on the performance of a circulation control wing section[C]∥ 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
113 | JONES G S, ENGLAR R J. Advances in pneumatic-controlled high-lift systems through pulsed blowing[C]∥ 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003. |
114 | JONES G S, VIKEN S A, WASHBURN A E, et al. An active flow circulation controlled flap concept for general aviation aircraft applications[C]∥ 1st Flow Control Conference. Reston: AIAA, 2002. |
115 | 宋彦萍, 杨晓光, 李亚超, 等. 环量控制翼型中柯恩达效应的数值模拟[J]. 工程热物理学报, 2010, 31(9): 1475-1479. |
SONG Y P, YANG X G, LI Y C, et al. Numerical simulation of coanda effect in circulation control airfoil[J]. Journal of Engineering Thermophysics, 2010, 31(9): 1475-1479 (in Chinese). | |
116 | 冯立好, 王晋军, KWINGSO C. 等离子体环量控制翼型增升的实验研究[J]. 力学学报, 2013, 45(6): 815-821. |
FENG L H, WANG J J, KWINGSO C. Experimental investigation on lift increment of a plasma circulation control airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 815-821 (in Chinese). | |
117 | 许建华, 李凯, 宋文萍, 等. 低雷诺数下协同射流关键参数对翼型气动性能的影响[J]. 航空学报, 2018, 39(8): 122018. |
XU J H, LI K, SONG W P, et al. Influence of co-flow jet key parameters on airfoil aerodynamic performance at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 122018 (in Chinese). | |
118 | 王畅, 何龙, 徐栋霞, 等. 共轴刚性旋翼桨毂流动控制减阻研究[J]. 航空学报, 2024, 45(9): 529084. |
WANG C, HE L, XU D X, et al. Study on flow control drag reduction of hub on coaxial rigid rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529084 (in Chinese). | |
119 | 段登燕, 裴家涛, 祖瑞, 等. 电机-变距螺旋桨动力系统功率优化控制[J]. 航空学报, 2021, 42(3): 623933. |
DUAN D Y, PEI J T, ZU R, et al. Power optimization and control of motor variable-pitch propeller propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 623933 (in Chinese). | |
120 | 刘坤澎, 王海峰, 江泓鑫, 等. 螺旋桨多设计点气动优化方法和变桨距角策略[J]. 航空学报, 2024,45(9):528831. |
LIU K P, WANG H F, JIANG H X, et al. Aerodynamic optimization method of propeller multi-design points and variable pitch angle strategy[J]. Acta Aeronautica et Astronautica Sinica, 2024,45(9):528831 (in Chinese). |
[1] | 王海峰, 刘坤澎, 江泓鑫, 杜晨曦. 螺旋桨多设计点气动优化方法和变桨距角策略[J]. 航空学报, 2024, 45(9): 528831-528831. |
[2] | 王畅, 何龙, 徐栋霞, 唐敏, 马率, 吴希明. 共轴刚性旋翼桨毂流动控制减阻研究[J]. 航空学报, 2024, 45(9): 529084-529084. |
[3] | 谢玮, 罗振兵, 周岩, 刘强, 吴建军, 董昊. 高超声速双楔激波干扰定常射流控制试验研究[J]. 航空学报, 2024, 45(7): 128813-128813. |
[4] | 李广佳, 王红波, 张凯, 仪志胜. 临近空间太阳能无人机增升减阻技术综述[J]. 航空学报, 2024, 45(5): 529644-529644. |
[5] | 王浩, 罗振兵, 邓雄, 周岩, 张鉴源, 赵志杰. 基于合成双射流的翼型阵风载荷减缓[J]. 航空学报, 2024, 45(16): 129660-129660. |
[6] | 汪松柏, 郝玉扬, 吴亚东, 陈勇, 余华蔚, 杜林. 航空发动机压气机旋转不稳定现象研究进展[J]. 航空学报, 2024, 45(16): 29851-029851. |
[7] | 王子运, 于航, 张悦, 谭慧俊, 金毅, 李鑫. 空天飞行器可调进气系统关键问题研究进展[J]. 航空学报, 2024, 45(11): 529440-529440. |
[8] | 刘冠冕, 张帆, 程志航, 杨康智, 秦何军. 多发螺旋桨飞机结冰气象探测器安装位置研究[J]. 航空学报, 2023, 44(S2): 729295-729295. |
[9] | 高世琦, 丁博, 解旭祯, 李铮, 陈林, 钱首元, 焦子涵, 白光辉. 等离子体激励在高速流动中的减阻机制[J]. 航空学报, 2023, 44(S2): 729373-729373. |
[10] | 王旺, 饶彩燕, 徐聪, 李思怡, 段毅, 张健. 激光能量沉积对超声速进气道流动的控制效果[J]. 航空学报, 2023, 44(S2): 729424-729424. |
[11] | 高显忠, 邓小龙, 王玉杰, 郭正, 侯中喜. 临近空间太阳能飞机能量最优飞行航迹规划方法展望[J]. 航空学报, 2023, 44(8): 27265-027265. |
[12] | 邓小龙, 杨希祥, 朱炳杰, 麻震宇, 侯中喜. 智能平流层浮空器Loon关键技术分析与仿真[J]. 航空学报, 2023, 44(8): 127412-127412. |
[13] | 李俊红, 靳旭红, 刘春风, 苗文博, 程晓丽. 临近空间高速飞行器微量气动力试验及计算[J]. 航空学报, 2023, 44(6): 127072-127072. |
[14] | 崔玉红, 徐艺哲, 吕凡熹, 赵飞, 张宇佳, 孙佳濛, 左光. 临近空间高超声速飞行器武器投放影响因素[J]. 航空学报, 2023, 44(24): 128539-128539. |
[15] | 张健, 张敏, 杜娟, 黄伟亮, 聂超群. 自适应康达喷气控制在高负荷压气机中的试验研究[J]. 航空学报, 2023, 44(22): 128883-128883. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学