收稿日期:
2024-02-01
修回日期:
2024-02-21
接受日期:
2024-03-15
出版日期:
2024-03-28
发布日期:
2024-03-25
通讯作者:
宋立明
E-mail:songlm@mail.xjtu.edu.cn
基金资助:
Zhendong GUO1, Haojie LI1, Liming SONG1(), Hualiang ZHANG2, Zhao YIN2
Received:
2024-02-01
Revised:
2024-02-21
Accepted:
2024-03-15
Online:
2024-03-28
Published:
2024-03-25
Contact:
Liming SONG
E-mail:songlm@mail.xjtu.edu.cn
Supported by:
摘要:
针对传统混沌多项式面临的“维度灾难”以及依赖实际任务和经验人为给定正交多项式展开阶次等问题,基于相关向量机回归求解展开系数的稀疏解并结合交叉验证判别法,发展了一种基于自适应稀疏混沌多项式的不确定性量化方法。函数算例测试结果表明,所发展方法相比于传统回归法混沌多项式所需样本更少且精度更高。进一步,将基于自适应稀疏混沌多项式的不确定性量化方法与 NSGA-II 多目标优化算法及 Kriging 模型相结合,建立了鲁棒性设计优化框架。考虑加工误差不确定性的影响,以叶栅总压损失系数的均值最小和方差最小为目标函数,完成了某动力涡轮叶栅气动鲁棒性设计优化。优化后,平均总压损失系数有所降低,对加工误差不确定性的敏感性程度显著降低。两个代表优化设计个体总压损失系数均值和方差分别降低了16.41%和98.57%,总压损失系数性能核算分别减小了13.43%和2.82%。最后,对流场进行分析,揭示了优化设计气动性能提高的原因。
中图分类号:
郭振东, 李豪杰, 宋立明, 张华良, 尹钊. 基于自适应稀疏混沌多项式的鲁棒性优化方法[J]. 航空学报, 2024, 45(19): 630273.
Zhendong GUO, Haojie LI, Liming SONG, Hualiang ZHANG, Zhao YIN. Robust optimization method based on adaptive sparse polynomial chaos[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 630273.
表 4
叶型设计参数
序号 | 设计参数 | 说明 |
---|---|---|
1 | 前缘半径 | 进口圆半径 |
2 | 尾缘半径 | 出口圆半径 |
3 | 轴向弦长 | 轴向最大距离 |
4 | 圆心连线角 | 圆心连线与轴向夹角 |
5 | 进口几何角 | 进口方向与额线夹角 |
6 | 进口上楔角 | 吸力面前缘切线与进口方向夹角 |
7 | 进口下楔角 | 压力面前缘切线与进口方向夹角 |
8 | 前缘修正系数 | 可对吸力面进口曲线微调 |
9 | 有效出气角 | |
10 | 出口偏转角 | 出口圆切线与吸力面尾缘切线夹角 |
11 | 关联系数 | 控制喉部出口无遮盖段曲线 |
12 | 出口楔角 | 吸力面尾缘切线与压力面尾缘切线夹角 |
13 | 控制系数1 | 吸力面第一段曲线控制系数1 |
14 | 控制系数2 | 吸力面第一段曲线控制系数2 |
15 | 控制系数3 | 吸力面第二段曲线控制系数1 |
16 | 控制系数4 | 吸力面第二段曲线控制系数2 |
17 | 控制系数5 | 压力面曲线控制系数1 |
18 | 控制系数6 | 压力面曲线控制系数2 |
1 | 付少林. 变转速动力涡轮数值分析及优化设计研究[D]. 南京: 南京航空航天大学, 2020: 29-41. |
FU S L. Numerical research of variable-speed power turbine and optimization design[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 29-41 (in Chinese). | |
2 | 李翔宇, 姜东坡, 赵俊明, 等. 某型动力涡轮气动分析及优化设计[J]. 汽轮机技术, 2021, 63(5): 330-332, 361. |
LI X Y, JIANG D P, ZHAO J M, et al. Aerodynamic analysis and optimization design of a power turbine[J]. Turbine Technology, 2021, 63(5): 330-332, 361 (in Chinese). | |
3 | 陈晨, 李维. 高负荷动力涡轮叶型优化研究[J]. 现代机械, 2022(1): 1-5. |
CHEN C, LI W. Optimization of blade profile of highly-loaded power turbine[J]. Modern Machinery, 2022(1): 1-5 (in Chinese). | |
4 | 李翔宇, 霍玉鑫, 徐海成, 等. 船用燃气轮机动力涡轮气动设计及优化研究[J]. 推进技术, 2023, 44(2): 143-151. |
LI X Y, HUO Y X, XU H C, et al. Aerodynamic design and optimization of power turbine for marine gas turbine[J]. Journal of Propulsion Technology, 2023, 44(2): 143-151 (in Chinese). | |
5 | BAMMERT K, STOBBE H. Results of experiments for determining the influence of blade profile changes and manufacturing tolerances on the efficiency, the enthalpy drop, and the mass flow of multi-stage axial turbines[C]∥ Proceedings of ASME 1970 Winter Annual Meeting. New York: ASME, 2015. |
6 | BAMMERT K, SANDSTEDE H. Influences of manufacturing tolerances and surface roughness of blades on the performance of turbines[J]. Journal of Engineering for Power, 1976, 98(1): 29-36. |
7 | KANG J S, LEE T Y, LEE D Y. Robust optimization for engineering design[J]. Engineering Optimization, 2012, 44(2): 175-194. |
8 | DING T, LIU S Y, YUAN W, et al. A two-stage robust reactive power optimization considering uncertain wind power integration in active distribution networks[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1): 301-311. |
9 | PAIVA R M, CRAWFORD C, SULEMAN A. Robust and reliability-based design optimization framework for wing design[J]. AIAA Journal, 2014, 52(4): 711-724. |
10 | BENTAL A, NEMIROVSKI A. Robust optimization–methodology and applications[J]. Mathematical Programming, 2002, 92(3): 453-480. |
11 | KUMAR A, KEANE A J, NAIR P B, et al. Robust design of compressor blades against manufacturing variations[C]∥ Proceedings of ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2008: 1105-1118. |
12 | VINOGRADOV K A, KRETININ G V, OTRYAHINA K V, et al. Robust optimization of the HPT blade cooling and aerodynamic efficiency[C]∥ Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. New York: ASME, 2016. |
13 | REIS C J B, MANZANARES-FILHO N, DE LIMA A M G. Robust optimization of aerodynamic loadings for airfoil inverse designs[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(5): 207. |
14 | 陶志, 郭振东, 李琛玺, 等. 基于Kriging的不确定性量化及鲁棒性优化的研究[J]. 工程热物理学报, 2019, 40(3): 537-542. |
TAO Z, GUO Z D, LI C X, et al. Research on kriging-based uncertainty quantification and robust design optimization[J]. Journal of Engineering Thermophysics, 2019, 40(3): 537-542 (in Chinese). | |
15 | 夏志恒, 罗佳奇. 考虑来流角变化影响的叶栅稳健性优化设计[J]. 工程热物理学报, 2021, 42(1): 121-129. |
XIA Z H, LUO J Q. Robust design optimization of a turbine cascade considering the uncertain changes of inlet flow angle[J]. Journal of Engineering Thermophysics, 2021, 42(1): 121-129 (in Chinese). | |
16 | 赵欢, 高正红, 夏露. 高速自然层流翼型高效气动稳健优化设计方法[J]. 航空学报, 2022, 43(1): 124894. |
ZHAO H, GAO Z H, XIA L. Efficient robust aerodynamic design optimization method for high-speed NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124894 (in Chinese). | |
17 | 罗佳奇, 陈泽帅, 曾先. 考虑几何设计参数不确定性影响的涡轮叶栅稳健性气动设计优化[J]. 航空学报, 2020, 41(10): 123826. |
LUO J Q, CHEN Z S, ZENG X. Robust aerodynamic design optimization of turbine cascades considering uncertainty of geometric design parameters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123826 (in Chinese). | |
18 | GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance[J]. Journal of Turbomachinery, 2003, 125(4): 692-703. |
19 | SCHNELL R, LENGYEL-KAMPMANN T, NICKE E. On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics[J]. Journal of Turbomachinery, 2014, 136(9): 091005. |
20 | GIEBMANNS A, BACKHAUS J, FREY C, et al. Compressor leading edge sensitivities and analysis with an adjoint flow solver[C]∥ Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. New York: ASME, 2013. |
21 | 李玉, 楚武利, 姬田园. 叶片安装角偏差对动叶性能影响的不确定性研究[J]. 西安交通大学学报, 2023, 57(4): 49-59. |
LI Y, CHU W L, JI T Y. Uncertainty research of effects of blade stagger angle deviation on the performance of rotor[J]. Journal of Xi’an Jiaotong University, 2023, 57(4): 49-59 (in Chinese). | |
22 | HAO M Y, BAI B, LI Y Y, et al. Uncertainty quantification on the cooling performance of a transonic turbine vane with upstream endwall misalignment[J]. Journal of Turbomachinery, 2022, 144(12): 121004. |
23 | HUANG M, LI Z G, LI J, et al. Efficient uncertainty quantification and sensitivity analysis on the aerothermal performance of turbine blade squealer tip[J]. Journal of Turbomachinery, 2022, 144(5): 051014. |
24 | XIU D B, KARNIADAKIS G E. The wiener-askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619-644. |
25 | ZHANG G, BAI J J, WANG L X, et al. Uncertainty analysis of arbitrary probability distribution based on Stieltjes Process[C]∥ 2017 IEEE 21st Workshop on Signal and Power Integrity (SPI). Piscataway: IEEE Press, 2017: 1-3. |
26 | TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1: 211-244. |
27 | MARREL A, IOOSS B, LAURENT B, et al. Calculations of Sobol indices for the Gaussian process metamodel[J]. Reliability Engineering & System Safety, 2009, 94(3): 742-751. |
28 | OAKLEY J E, O’HAGAN A. Probabilistic sensitivity analysis of complex models: A Bayesian approach[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2004, 66(3): 751-769. |
29 | 杨宇峰. 宽工况动力涡轮气动特性实验及低损失叶型设计优化研究[D]. 西安:西安交通大学, 2023: 29-33. |
YANG Y F. Experimental study on aerodynamic characteristics of wide operating condition power turbine and design optimization of low loss blade[D]. Xi’an: Xi’an Jiaotong University, 2023: 29-33 (in Chinese). | |
30 | 宋立明. 基于进化算法的轴流式叶轮机械叶栅气动优化设计系统的研究[D]. 西安:西安交通大学, 2006: 14-24. |
SONG L M. Aerodynamic optimization system of axial turbomachinery blades using evolution algorithms [D]. Xi’an: Xi’an Jiaotong University, 2006: 14-24 (in Chinese). | |
31 | 李彬, 宋立明, 李军, 等. 长叶片透平级多学科多目标优化设计[J]. 西安交通大学学报, 2014, 48(1): 1-6. |
LI B, SONG L M, LI J, et al. Multidisciplinary and multiobjective optimization design of long blade turbine stage[J]. Journal of Xi’an Jiaotong University, 2014, 48(1): 1-6 (in Chinese). | |
32 | 宋立明, 李军, 丰镇平. 跨音速透平扭叶片的气动优化设计研究[J]. 西安交通大学学报, 2005, 39(11): 1277-1281. |
SONG L M, LI J, FENG Z P. Study on aerodynamic optimization design of transonic turbine twist blade[J]. Journal of Xi’an Jiaotong University, 2005, 39(11): 1277-1281 (in Chinese). | |
33 | 陈云, 宋立明, 王雷, 等. 自动优化技术在涡轮设计中的应用[J]. 航空发动机, 2021, 47(4): 59-66. |
CHEN Y, SONG L M, WANG L, et al. Application of automatic optimization technology in turbine design[J]. Aeroengine, 2021, 47(4): 59-66 (in Chinese). | |
34 | 颜勇, 祝培源, 宋立明, 等. 基于非平稳高斯过程的叶栅加工误差不确定性量化[J]. 推进技术, 2017, 38(8): 1767-1775. |
YAN Y, ZHU P Y, SONG L M, et al. Uncertainty quantification of cascade manufacturing error based non-stationary Gaussian process[J]. Journal of Propulsion Technology, 2017, 38(8): 1767-1775 (in Chinese). | |
35 | 刘铠烨, 楚武利, 郭正涛, 等. 加工误差对超音速叶栅气动性能影响的不确定性分析[J/OL]. 航空动力学报,(2022-12-27)[2023-12-29]. . |
LIU K Y, WU C L, GUO Z T, et al. Uncertainty analysis of effects of manufacturing errors on aerodynamic performance of supersonic cascades[J/OL]. Journal of Aerospace Power, (2022-12-27)[2023-12-29]. (in Chinese). | |
36 | BUNKER R S. The effects of manufacturing tolerances on gas turbine cooling[J]. Journal of Turbomachinery, 2009, 131(4): 041018. |
37 | ALEXEEV R A, TISHCHENKO V A, GRIBIN V G, et al. Turbine blade profile design method based on Bezier curves[J]. Journal of Physics: Conference Series, 2017, 891: 012254. |
38 | HAMAKHAN I A, KORAKIANITIS T. Aerodynamic performance effects of leading-edge geometry in gas-turbine blades[J]. Applied Energy, 2010, 87(5): 1591-1601. |
[1] | 柳家齐, 陈荣钱, 楼锦华, 韩旭, 吴昊, 尤延铖. 基于深度学习的高速直升机旋翼翼型气动优化设计[J]. 航空学报, 2024, 45(9): 529828-529828. |
[2] | 崔壮壮, 原昕, 赵国庆, 井思梦, 招启军. 共轴刚性旋翼高速直升机前飞性能操纵策略影响[J]. 航空学报, 2024, 45(9): 529256-529256. |
[3] | 陈树生, 冯聪, 张兆康, 赵轲, 张新洋, 高正红. 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计[J]. 航空学报, 2024, 45(6): 629596-629596. |
[4] | 李玉涵, 杨宝玉, 吴亦农, 张强, 唐晓. 卫星光机载荷热模型参数高效修正方法研究进展[J]. 航空学报, 2024, 45(6): 628814-628814. |
[5] | 姬田园, 楚武利, 张皓光, 郭正涛, 孟德君. 基于数据驱动的扭转度偏差对压气机性能的影响[J]. 航空学报, 2024, 45(19): 629938-629938. |
[6] | 陶言和, 郭勤涛, 周瑾, 马嘉倩, 李效法. 观测不确定性下变分贝叶斯高效模型修正[J]. 航空学报, 2024, 45(19): 229969-229969. |
[7] | 黄明, 张垲垣, 李志刚, 李军. 涡轮动叶气膜冷却结构的凹槽状叶顶气热性能不确定性量化[J]. 航空学报, 2024, 45(19): 629979-629979. |
[8] | 庄皓琬, 曹传军, 王琰, 滕金芳, 朱铭敏, 羌晓青. 基于NIPC的非轴对称安装角不确定性分析[J]. 航空学报, 2024, 45(19): 630145-630145. |
[9] | 张永杰, 周静飘, 石磊, 李栋, 张彬乾. 基于PRSEUS结构的翼身融合民机中央机体球亏面框优化设计方法[J]. 航空学报, 2024, 45(12): 229331-229331. |
[10] | 王四季, 张羽薇, 黄开明, 吕彪, 赵海凤, 王虎, 廖明夫. 基于改进粒子群算法的直升机动力涡轮转子系统优化方法[J]. 航空学报, 2024, 45(1): 228608-228608. |
[11] | 赵欢, 高正红, 夏露. 基于新型多可信度代理模型的多目标优化方法[J]. 航空学报, 2023, 44(6): 126962-126962. |
[12] | 赵欢, 高正红, 夏露. 基于新型高维代理模型的气动外形设计方法[J]. 航空学报, 2023, 44(5): 126924-126924. |
[13] | 郑志阳, 张阳, 张钊, 吴宝海, 张莹. 基于GA⁃SVR的薄壁叶片辅助支撑布局优化方法[J]. 航空学报, 2023, 44(4): 426805-426805. |
[14] | 于汀, 李璐祎, 刘昱杉, 常泽明. 观测不确定性下的高效贝叶斯更新方法及其在机翼结构中的应用[J]. 航空学报, 2023, 44(24): 228592-228592. |
[15] | 闫循良, 王培臣, 王舒眉, 杨宇轩, 王宽. 基于混沌多项式的RBCC飞行器上升段鲁棒轨迹快速优化[J]. 航空学报, 2023, 44(21): 528349-528349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学