姬田园1, 楚武利1(), 张皓光1, 郭正涛1, 孟德君2
收稿日期:
2023-12-05
修回日期:
2023-12-20
接受日期:
2024-01-02
出版日期:
2024-01-05
发布日期:
2024-01-04
通讯作者:
楚武利
E-mail:wlchu@nwpu.edu.cn
基金资助:
Tianyuan JI1, Wuli CHU1(), Haoguang ZHANG1, Zhengtao GUO1, Dejun MENG2
Received:
2023-12-05
Revised:
2023-12-20
Accepted:
2024-01-02
Online:
2024-01-05
Published:
2024-01-04
Contact:
Wuli CHU
E-mail:wlchu@nwpu.edu.cn
Supported by:
摘要:
为研究引入扭转度偏差维数变化以及相关性变化对压气机性能量化结果的影响,以某压气机转子叶片扭转度偏差测量结果为基础,采用基于数据驱动的非嵌入式多项式混沌方法,量化研究了叶片扭转度偏差对单级轴流亚声速压气机气动性能的不确定性影响,并进行了敏感性分析。研究结果表明:各工况点处压气机性能标准差均随着引入扭转度偏差维数的增加而减小。通过量化对比发现,考虑叶顶和叶根2个截面上的扭转度偏差,足以保证压气机性能标准差以及性能概率分布形式的收敛性。而在敏感性分析中发现,引入的扭转度偏差维数越多,可以更准确的判别压气机性能最敏感的扭转度偏差区域。随着各截面上扭转度偏差之间相关性逐渐增强,各工况下压气机性能的波动程度也逐渐增强,压气机性能对各扭转度偏差的一阶敏感性指标的差距也逐渐减小,但压气机性能对各截面上扭转度偏差敏感程度的排序并没有改变。
中图分类号:
姬田园, 楚武利, 张皓光, 郭正涛, 孟德君. 基于数据驱动的扭转度偏差对压气机性能的影响[J]. 航空学报, 2024, 45(19): 629938.
Tianyuan JI, Wuli CHU, Haoguang ZHANG, Zhengtao GUO, Dejun MENG. Effect of data-driven twist deviation on compressor performance[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 629938.
1 | BERGNER J, KABLITZ S, HENNECKE D K, et al. Influence of sweep on the 3D shock structure in an axial transonic compressor[C]∥Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air. New York: ASME, 2008: 343-352. |
2 | 李萍. 叶片加工误差及数据传递对压气机气动性能的影响[D]. 西安: 西北工业大学, 2015: 1-8. |
LI P. Effect of blade machining error and data transfer on compressor aerodynamic performance[D]. Xi’an: Northwestern Polytechnical University, 2015: 1-8 (in Chinese). | |
3 | 罗佳奇, 朱亚路, 刘锋. 基于伴随方法的叶片加工偏差气动灵敏度分析[J]. 工程热物理学报, 2017, 38(3): 498-503. |
LUO J Q, ZHU Y L, LIU F. Aerodynamic sensitivity analysis for manufacturing variations of a turbine blade by an adjoint method[J]. Journal of Engineering Thermophysics, 2017, 38(3): 498-503 (in Chinese). | |
4 | WU C Y. Arbitrary surface flank milling and flank SAM in the design and manufacturing of jet engine fan and compressor airfoils[C]∥Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2013: 21-30. |
5 | 但玥, 王浩浩, 高丽敏, 等. 扭转度误差对跨声速压气机叶片性能的影响[J]. 推进技术, 2023, 44(10): 89-96. |
DAN Y, WANG H H, GAO L M, et al. Effects of twist angle error on transonic compressor blades performance[J]. Journal of Propulsion Technology, 2023, 44(10): 89-96 (in Chinese). | |
6 | BAMMERT K, SANDSTEDE H. Influences of manufacturing tolerances and surface roughness of blades on the performance of turbines[J]. Journal of Engineering for Power, 1976, 98(1): 29-36. |
7 | 张国臣, 刘波, 曹志远. 静子叶栅安装角异常非定常流场数值研究[J]. 推进技术, 2014, 35(2): 187-194. |
ZHANG G C, LIU B, CAO Z Y. Numerical analysis of unsteady flow for stagger angle of stator cascade adjusting abnormally[J]. Journal of Propulsion Technology, 2014, 35(2): 187-194 (in Chinese). | |
8 | 张国臣, 刘波, 杨小东, 等. 叶栅安装角异常的非定常流场数值模拟[J]. 航空动力学报, 2014, 29(10): 2450-2456. |
ZHANG G C, LIU B, YANG X D, et al. Numerical simulation of unsteady flow field on abnormal stagger angle of cascade[J]. Journal of Aerospace Power, 2014, 29(10): 2450-2456 (in Chinese). | |
9 | 叶学民, 李新颖, 李春曦. 第一级叶轮单动叶安装角异常对动叶可调轴流风机性能的影响[J]. 中国电机工程学报, 2014, 34(14): 2297-2306. |
YE X M, LI X Y, LI C X. Effect of the first-stage impeller with single abnormal blade on the performance of a variable pitch axial fan[J]. Proceedings of the CSEE, 2014, 34(14): 2297-2306 (in Chinese). | |
10 | 高丽敏, 蔡宇桐, 曾瑞慧, 等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术, 2017, 38(3): 525-531. |
GAO L M, CAI Y T, ZENG R H, et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology, 2017, 38(3): 525-531 (in Chinese). | |
11 | DALBANJAN M S, SARANGI N. Sensitivity study of stagger angle on the aerodynamic performance of transonic axial flow compressors[C]∥Proceedings of the National Aerospace Propulsion Conference. Singapore: Springer, 2023: 3-14. |
12 | LANGE A, VOIGT M, VOGELER K, et al. Probabilistic CFD simulation of a high-pressure compressor stage taking manufacturing variability into account[C]∥Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. New York: ASME, 2010: 617-628. |
13 | 李玉, 楚武利, 姬田园. 叶片安装角偏差对动叶性能影响的不确定性研究[J]. 西安交通大学学报, 2023, 57(4): 49-59. |
LI Y, CHU W L, JI T Y. Uncertainty research of effects of blade stagger angle deviation on the performance of rotor[J]. Journal of Xi’an Jiaotong University, 2023, 57(4): 49-59 (in Chinese). | |
14 | GUO Z T, CHU W L, ZHANG H G. A data-driven non-intrusive polynomial chaos for performance impact of high subsonic compressor cascades with stagger angle and profile errors[J]. Aerospace Science and Technology, 2022, 129: 107802. |
15 | LANGE A, VOIGT M, VOGELER K, et al. Impact of manufacturing variability on multistage high-pressure compressor performance[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(11): 112601. |
16 | 李晓丽, 楚武利. 安装角变化对多级轴流压缩机性能影响的分析[J]. 风机技术, 2008, 50(5): 27-29. |
LI X L, CHU W L. Analysis on the influence of variable installation angle on performance of multistage axial-flow compressor[J]. Compressor, Blower & Fan Technology, 2008, 50(5): 27-29 (in Chinese). | |
17 | LANGE A, VOIGT M, VOGELER K, et al. Impact of manufacturing variability and nonaxisymmetry on high-pressure compressor stage performance[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(3): 032504. |
18 | 姬田园, 楚武利, 张皓光, 等. 真实安装角偏差影响压气机性能的不确定性量化[J]. 航空动力学报, 2024, 39(10): 20220858. |
JI T Y, CHU W L, ZHANG H G, et al. Uncertainty quantification of real stagger angle deviation affecting compressor performance[J]. Journal of Aerospace Power, 2024, 39(10): 20220858 (in Chinese). | |
19 | 刘佳鑫, 于贤君, 孟德君, 等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报, 2021, 42(2): 423796. |
LIU J X, YU X J, MENG D J, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 423796 (in Chinese). | |
20 | GUO Z T, CHU W L, ZHANG H G. Uncertainty analysis of global and local performance impact of inflow and geometric uncertainties using sparse grid-based non-intrusive polynomial chaos[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2022, 236(7): 1239-1256. |
21 | 姬田园, 楚武利, 戴雨晨, 等. 叶顶间隙偏差对叶片气动性能影响的不确定性研究[J]. 推进技术, 2022, 43(10): 134-146. |
JI T Y, CHU W L, DAI Y C, et al. Uncertainty research of effects of blade tip clearance deviation on blade aerodynamic performance[J]. Journal of Propulsion Technology, 2022, 43(10): 134-146 (in Chinese). | |
22 | 郑似玉, 滕金芳, 羌晓青. 叶片加工超差对高压压气机性能影响和敏感性分析[J]. 机械工程学报, 2018, 54(2): 216-224. |
ZHENG S Y, TENG J F, QIANG X Q. Sensitivity analysis of manufacturing variability on high-pressure compressor performance[J]. Journal of Mechanical Engineering, 2018, 54(2): 216-224 (in Chinese). | |
23 | WANG W, CHU W L, ZHANG H G, et al. Experimental and numerical study of tip injection in a subsonic axial flow compressor[J]. Chinese Journal of Aeronautics, 2017, 30(3): 907-917. |
24 | CHI Z D, CHU W L, ZHANG Z Y, et al. Research on the stability enhancement mechanism of multi-parameter interaction of casing treatment in an axial compressor rotor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(12): 2405-2419. |
25 | CHI Z D, CHU W L, ZHANG H G, et al. Stall margin evaluation and data mining based multi-objective optimization design of casing treatment for an axial compressor rotor[J]. Physics of Fluids, 2023, 35(8): 086117. |
26 | CHI Z D, CHU W L, ZHANG H G, et al. Unsteady effects of casing treatment on tip flow structures in a subsonic compressor rotor[C]∥Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. New York: ASME, 2022. |
27 | ZHANG H G, LIU W H, WANG E H, et al. Mechanism investigation of enhancing the stability of an axial flow rotor by blade angle slots[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(13): 4750-4764. |
28 | ZHANG H G, LI Q, DONG F Y, et al. Mechanism of affecting the performance and stability of an axial flow compressor with inlet distortion[J]. Journal of Thermal Science, 2021, 30(4): 1406-1420. |
29 | JI T Y, CHU W L, LIANG C Yet al. Uncertainty quantification on the influence of blade thickness deviation at different rotational speeds based on flow dissipation analysis[J]. Physics of Fluids, 2023, 35(6): 066126. |
30 | SCHLÜTER L, VOIGT P, VOIGT M, et al. The validation of a parametric leading edge model for probabilistic CFD analyses of post-service compressor airfoils[C]∥Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. New York: ASME, 2022. |
31 | LIU B J, LIU J X, YU X J, et al. A novel decomposition method for manufacture variations and the sensitivity analysis on compressor blades[J]. Aerospace, 2022, 9(10): 542. |
32 | WANG J Y, WANG B T, YANG H L, et al. Compressor geometric uncertainty quantification under conditions from near choke to near stall[J]. Chinese Journal of Aeronautics, 2023, 36(3): 16-29. |
33 | 姬田园, 楚武利, 郭正涛, 等. 一种叶片截面几何特征参数的获取方法: CN115168986A[P]. 2022-10-11. |
JI T Y, CHU W L, GUO Z T, et al. A method for obtaining geometric feature parameters of blade section: CN115168986A[P]. 2022-10-11 (in Chinese). | |
34 | ROSENBLATT M. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956, 27(3): 832-837. |
35 | PROTS A, SCHLÜTER L, VOIGT M, et al. Impact of epistemic uncertainty on performance parameters of compressor blades[C]∥Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. New York: ASME, 2022. |
36 | 赵轲, 高正红, 黄江涛, 等. 基于PCE方法的翼型不确定性分析及稳健设计[J]. 力学学报, 2014, 46(1): 10-19. |
ZHAO K, GAO Z H, HUANG J T, et al. Uncertainty quantification and robust design of airfoil based on polynomial chaos technique[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 10-19 (in Chinese). | |
37 | GOPINATHRAO N P, BAGSHAW D, MABILAT C, et al. Non-deterministic CFD simulation of a transonic compressor rotor[C]∥Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. New York: ASME, 2010: 1125-1134. |
38 | CHU W L, JI T Y, CHEN X Y, et al. Mechanism analysis and uncertainty quantification of blade thickness deviation on rotor performance[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2023, 237(6): 1188-1202. |
39 | WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897-936. |
40 | XIA Z H, LUO J Q, LIU F. Performance impact of flow and geometric variations for a turbine blade using an adaptive NIPC method[J]. Aerospace Science and Technology, 2019, 90: 127-139. |
41 | XIU D B, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187(1): 137-167. |
42 | AHLFELD R, BELKOUCHI B, MONTOMOLI F. SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos[J]. Journal of Computational Physics, 2016, 320: 1-16. |
43 | 王浩浩, 高丽敏, 杨光, 等. 一种鲁棒的数据驱动不确定性量化方法及在压气机叶栅中的应用[J]. 航空学报, 2023, 44(17): 128169. |
WANG H H, GAO L M, YANG G, et al. Robust data-driven uncertainty quantification method and its application in compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 128169 (in Chinese). | |
44 | GUO Z T, CHU W L. Stochastic aerodynamic analysis for compressor blades with manufacturing variability based on a mathematical dimensionality reduction method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(10): 5719-5735. |
45 | OLADYSHKIN S, NOWAK W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion[J]. Reliability Engineering & System Safety, 2012, 106: 179-190. |
46 | ISUKAPALLI S S, ROY A, GEORGOPOULOS P G. Stochastic response surface methods (SRSMs) for uncertainty propagation: Application to environmental and biological systems[J]. Risk Analysis, 1998, 18(3): 351-363. |
47 | MARCELLO ANILE A, SPINELLA S, RINAUDO S. Stochastic response surface method and tolerance analysis in microelectronics[J]. COMPEL-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22(2): 314-327. |
48 | SOBOL’ I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1-3): 271-280. |
49 | MARA T A, TARANTOLA S. Variance-based sensitivity indices for models with dependent inputs[J]. Reliability Engineering & System Safety, 2012, 107: 115-121. |
[1] | 姜乐, 陈以彪, 李炎军, 李贵林, 刘涛. 航空发动机增压式离心通风器流动与分离特性[J]. 航空学报, 2024, 45(2): 128675-128675. |
[2] | 高天贺, 田阔, 黄蕾, 张澍, 李增聪. 数据驱动的曲面构件形状⁃拓扑协同优化方法[J]. 航空学报, 2024, 45(2): 428806-428806. |
[3] | 陶言和, 郭勤涛, 周瑾, 马嘉倩, 李效法. 观测不确定性下变分贝叶斯高效模型修正[J]. 航空学报, 2024, 45(19): 229969-229969. |
[4] | 王子维, 范召林, 李彬, 曹杰, 邓亮, 王年华, 江雄. 压气机整机超大规模非定常模拟关键技术[J]. 航空学报, 2024, 45(18): 129865-129865. |
[5] | 汪松柏, 郝玉扬, 吴亚东, 陈勇, 余华蔚, 杜林. 航空发动机压气机旋转不稳定现象研究进展[J]. 航空学报, 2024, 45(16): 29851-029851. |
[6] | 董立卓, 张思琪, 张钊, 吴宝海. 机理⁃数据混合驱动的叶片加工变形预测方法[J]. 航空学报, 2024, 45(13): 629037-629037. |
[7] | 杨倩, 王彦哲, 杨迪, 李泽众, 曲巍崴. 基于数据驱动的纤维增强复合材料自动铺放速度预测与规划[J]. 航空学报, 2024, 45(10): 429313-429313. |
[8] | 张恺玲, 李思怡, 段毅, 阎超. 进气道流动中SST湍流模型参数的不确定度量化[J]. 航空学报, 2023, 44(S2): 729429-729429. |
[9] | 孙晓哲, 侯东, 杨建忠. 双余度机电作动器力纷争机理及敏感性[J]. 航空学报, 2023, 44(S1): 727661-727661. |
[10] | 崔西明, 邱志鹏, 魏嘉, 张弛, 宋凯, 李喆, 王树鹏. 基于数据驱动的结构钢表面应力磁巴克豪森噪声表征方法[J]. 航空学报, 2023, 44(8): 427237-427237. |
[11] | 王志凯, 陈盛, 范玮. 神经网络宽度对燃烧室排放预测的影响[J]. 航空学报, 2023, 44(5): 126816-126816. |
[12] | 刘德龙, 郭海宁, 尹海宝, 孟德君. 单级跨音压气机第1级可调静子在退喘过程中的气动力矩分析[J]. 航空学报, 2023, 44(24): 128550-128550. |
[13] | 张健, 张敏, 杜娟, 黄伟亮, 聂超群. 自适应康达喷气控制在高负荷压气机中的试验研究[J]. 航空学报, 2023, 44(22): 128883-128883. |
[14] | 刘汝兵, 陈泽帆, 林瑞鑫, 林麒. 等离子体合成射流主动控制平面叶栅叶片流致振动[J]. 航空学报, 2023, 44(20): 128430-128430. |
[15] | 董杰忠, 楚武利, 张皓光, 罗波, 晏松. 基于因果网络分析的扩压叶栅波浪形前缘控制机理[J]. 航空学报, 2023, 44(19): 128336-128336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学