1 |
AHMAD BURHANI A B, WOOK C D, HYEONGILL L. Finite element model updating of composite with adhesive jointed structure under built-up internal stress[J]. Journal of Vibration and Control, 2022, 28(11-12): 1390-1401.
|
2 |
BI S F, BEER M, COGAN S, et al. Stochastic model updating with uncertainty quantification: An overview and tutorial[J]. Mechanical Systems and Signal Processing, 2023, 204: 110784.
|
3 |
CRESPO L G, KENNY S P, GIESY D P. The NASA langley multidisciplinary uncertainty quantification challenge[C]∥16th AIAA Non-deterministic Approaches Conference. Reston: AIAA, 2014, doi: 10.2514/6.2014-1347 .
|
4 |
BECK J L, KATAFYGIOTIS L S. Updating models and their uncertainties. I: Bayesian statistical framework[J]. Journal of Engineering Mechanics, 1998, 124(4): 455-461.
|
5 |
FENG K, LU Z, CHEN Z, et al. An innovative Bayesian updating method for laminated composite structures under evidence uncertainty[J]. Composite structures, 2023, 304(1):116429.
|
6 |
LIAO B P, ZHAO R, YU K P, et al. A novel interval model updating framework based on correlation propagation and matrix-similarity method[J]. Mechanical Systems and Signal Processing, 2022, 162(2): 108039.
|
7 |
PANDA A K, MODAK S V. A two-stage approach to stochastic finite element model updating using FRF data[J]. Journal of Sound and Vibration, 2023, 553: 117670.
|
8 |
陈喆, 何欢, 陈国平, 等. 考虑不确定性因素的有限元模型修正方法研究[J]. 振动工程学报, 2017, 30(6): 921-928.
|
|
CHEN Z, HE H, CHEN G P, et al. The research of finite element model updating method considering the uncertainty[J]. Journal of Vibration Engineering, 2017, 30(6): 921-928 (in Chinese).
|
9 |
王震宇, 王计真, 杨婧艺, 等. 基于新型粒子群算法的结构动力学热振模型修正[J]. 航空学报, 2023, 44(7): 226559.
|
|
WANG Z Y, WANG J Z, YANG J Y, et al. Dynamics model updating of structures at high temperature based on novel particle swarm optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 226559 (in Chinese).
|
10 |
杨庆. 基于多级贝叶斯模型修正的结构损伤识别方法研究[D]. 大连: 大连交通大学, 2018: 17-30.
|
|
YANG Q. Study on structural damage identification method based on hierarchical Bayesian model updating[D].Dalian: Dalian Jiaotong University, 2018: 17-30. (in Chinese)
|
11 |
SEDEHI O, KATAFYGIOTIS L, PAPADIMITRIOU C. A time-domain hierarchical Bayesian approach for model updating[C]∥The 16th European Conference on Earthquake Engineering (16ECEE). Thessaloniki: European Association for Earthquake Engineering, 2018: 1-11.
|
12 |
SEDEHI O, PAPADIMITRIOU C, KATAFYGIOTIS L S. Probabilistic hierarchical Bayesian framework for time-domain model updating and robust predictions[J]. Mechanical Systems and Signal Processing, 2018, 123: 648-673.
|
13 |
KITAHARA M, BI S F, BROGGI M, et al. Bayesian model updating in time domain with metamodel-based reliability method[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part A Civil Engineering, 2021, 7(3), doi: 10.1061/AJRUA6.0001149 .
|
14 |
程马遥, 金银富, 尹振宇, 等. 改进DE-TMCMC法及其在高级模型参数识别上的应用[J]. 岩土工程学报, 2019, 41(12): 2281-2289.
|
|
CHENG M Y, JIN Y F, YIN Z Y, et al. Enhanced DE-TMCMC and its application in identifying parameters of advanced soil model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2281-2289 (in Chinese).
|
15 |
TONG W T, GE W, HAN X, et al. A low-complexity algorithm based on variational Bayesian inference for MIMO channel estimation[J]. Applied Acoustics, 2023, 211(2): 109512.
|
16 |
ZHANG B, HOU Y, YANG Y, et al. Variational Bayesian cardinalized probability hypothesis density filter for robust underwater multi-target direction-of-arrival tracking with uncertain measurement noise[J]. Frontiers in Physics, 2023, 11, doi: 10.3389/fphy.2023.1142400.
|
17 |
蔡巍, 陈明剑, 邓垦, 等. 基于变分贝叶斯自适应鲁棒滤波的动对动相对定位算法[J]. 中国惯性技术学报, 2023, 31(8): 760-767, 776.
|
|
CAI W, CHEN M J, DENG K, et al. Dynamic to dynamic relative positioning algorithm based on variational Bayesian adaptive robust filtering[J]. Journal of Chinese Inertial Technology, 2023, 31(8): 760-767, 776 (in Chinese).
|
18 |
李明, 柴洪洲, 靳凯迪, 等. 基于可变因子的变分贝叶斯SINS海上动态对准[J]. 海洋测绘, 2023, 43(4): 47-51.
|
|
LI M, CHAI H Z, JIN K D, et al. Variational Bayesian SINS marine dynamic alignment based on variable factor[J]. Hydrographic Surveying and Charting, 2023, 43(4): 47-51 (in Chinese).
|
19 |
田健. 基于变分贝叶斯滤波的MEMS-SINS/GPS组合导航算法研究[D]. 重庆: 重庆邮电大学, 2021: 35-52.
|
|
TIAN J. Research on MEMS-SINS/GPS integrated navigation based on varitional Bayesian filtering[D].Chongqing: Chongqing University of Posts and Telecommunications, 2021: 35-52. (in Chinese)
|
20 |
王彦钧. 基于变分贝叶斯的协同目标跟踪方法研究[D]. 镇江: 江苏大学, 2021: 41-50.
|
|
WANG Y J. Research on cooperative target tracking method based on variational bayes[D].Zhenjiang: Jiangsu University, 2021: 41-50. (in Chinese)
|
21 |
巴丽伟, 童常青. 基于变分贝叶斯推断的因子分析法[J]. 杭州电子科技大学学报(自然科学版), 2022, 42(3): 95-102.
|
|
BA L W, TONG C Q. Factor analysis based on variational Bayes inference[J]. Journal of Hangzhou Dianzi University (Natural Sciences), 2022, 42(3): 95-102 (in Chinese).
|
22 |
于汀, 李璐祎, 刘昱杉, 等. 观测不确定性下的高效贝叶斯更新方法及其在机翼结构中的应用[J]. 航空学报, 2023, 44(24): 117-134.
|
|
YU T, LI L Y, LIU Y S, et al. Efficient Bayesian updating method under observation uncertainty and its application in wing structure[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 117-134 (in Chinese).
|
23 |
熊芬芬, 李泽贤, 刘宇, 等. 基于数值模拟的工程设计中参数不确定性表征方法研究综述[J]. 航空学报, 2023, 44(22): 92-123.
|
|
XIONG F F, LI Z X, LIU Y, et al. A review of characterization methods for parameter uncertainty in engineering design based on numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 92-123 (in Chinese).
|
24 |
RANGANATH R. Black Box Variational Inference: Scalable, Generic Bayesian Computation and its Applications[D]. Princeton: Princeton University, 2017: 20-27.
|
25 |
ZHAO Y H. Gaussian process mixture model for prediction based on maximum posterior distribution[J]. Journal of Physics: Conference Series, 2021, 2014: 012007.
|
26 |
恽鹏. 不确定量测下的变分贝叶斯目标跟踪算法研究[D]. 南京: 南京理工大学, 2022: 14-16.
|
|
YUN P. Research on variational Bayesian target tracking algorithm under uncertain measurement[D].Nanjing: Nanjing University of Science and Technology, 2022: 14-16. (in Chinese)
|
27 |
ACERBI L. Variational Bayesian monte carlo[J]. Advances in Neural Information Processing Systems, 2018, 31: 8222-8232.
|
28 |
ACERBI L. Variational Bayesian Monte Carlo with noisy likelihoods[C]∥Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 8211-8222.
|
29 |
CHE Y F, WU X, PASTORE G, et al. Application of Kriging and Variational Bayesian Monte Carlo method for improved prediction of doped UO2 fission gas release[J]. Annals of Nuclear Energy, 2021, 153(3): 108046.
|
30 |
ZHANG Q, LI Y P, HUANG G H, et al. Copula function with Variational Bayesian Monte Carlo for unveiling uncertainty impacts on meteorological and agricultural drought propagation[J]. Journal of Hydrology, 2023, 622: 129669.
|
31 |
展铭. 螺栓连接结构动力学多响应模型修正与确认方法研究[D]. 南京: 南京航空航天大学, 2020: 74-75.
|
|
ZHAN M. Research on model updating and validation of bolt jointed structures based on multi dynamic responses[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 74-75 (in Chinese).
|
32 |
杨乐昌, 韩东旭, 王丕东. 基于Wasserstein距离测度的非精确概率模型修正方法[J]. 机械工程学报, 2022, 58(24): 300-311.
|
|
YANG L C, HAN D X, WANG P D. Imprecise probabilistic model updating using A Wasserstein distance-based uncertainty quantification metric[J]. Journal of Mechanical Engineering, 2022, 58(24): 300-311 (in Chinese).
|
33 |
姜东, 吴邵庆, 史勤丰, 等. 基于各向同性本构关系薄层单元的螺栓连接参数识别[J]. 振动与冲击, 2014, 33(22): 35-40.
|
|
JIANG D, WU S Q, SHI Q F, et al. Parameter identification of bolted-joint based on the model with thin-layer elements with isotropic constitutive relationship[J]. Journal of Vibration and Shock, 2014, 33(22): 35-40 (in Chinese).
|
34 |
DESAI C S, ZAMAN M M, LIGHTNER J G, et al. Thin-layer element for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 19-43.
|
35 |
LIAO T, FASANG A. Comparing groups of life-course sequences using the Bayesian information criterion and the likelihood-ratio test[J]. Sociological Methodology, 2020, 51: 44-85.
|
36 |
邓振鸿, 张保强, 苏国强, 等. 基于近似似然的频响函数不确定性模型修正[J]. 振动 测试与诊断, 2020, 40(3): 548-554, 628.
|
|
DENG Z H, ZHANG B Q, SU G Q, et al. Uncertainty model updating of frequency response function based on approximate likelihood function[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(3): 548-554, 628 (in Chinese).
|