刘明奇1, 韩忠华1, 杜涛2(), 许晨舟1, 曾涵1, 张科施1, 宋文萍1
收稿日期:
2023-11-18
修回日期:
2024-01-16
接受日期:
2024-03-21
出版日期:
2024-04-12
发布日期:
2024-04-10
通讯作者:
杜涛
E-mail:dutao_calt@sohu.com
基金资助:
Mingqi LIU1, Zhonghua HAN1, Tao DU2(), Chenzhou XU1, Han ZENG1, Keshi ZHANG1, Wenping SONG1
Received:
2023-11-18
Revised:
2024-01-16
Accepted:
2024-03-21
Online:
2024-04-12
Published:
2024-04-10
Contact:
Tao DU
E-mail:dutao_calt@sohu.com
Supported by:
摘要:
宽速域栅格舵设计是目前运载火箭子级重复使用的关键技术之一。栅格舵在火箭一子级返回飞行过程中经历亚、跨、超声速等多个速域,在不同速域下表现出截然不同的操纵效率和气动特性,甚至相互矛盾,使得高效率的栅格舵气动设计面临极大挑战。针对上述问题,应用基于机器学习代理模型的气动优化设计方法,分别开展了栅格舵在亚、跨、超声速典型状态的气动优化设计,获得了单个速域下的最优气动外形,并分析揭示了不同速域下栅格舵最优操纵效率的流动机制,为后续设计提供指导。由于实现最优操纵效率的流动机制不同,造成了不同速域优化解之间存在矛盾。针对上述矛盾,开展了宽速域栅格舵多目标气动优化设计,兼顾考虑亚、跨、超声速3个速域的影响,优化结果表明显著改善了栅格舵宽速域气动性能,提高了栅格舵操纵效率。
中图分类号:
刘明奇, 韩忠华, 杜涛, 许晨舟, 曾涵, 张科施, 宋文萍. 面向运载火箭栅格舵的最优操纵效率特征与宽速域气动优化设计方法[J]. 航空学报, 2024, 45(20): 129887.
Mingqi LIU, Zhonghua HAN, Tao DU, Chenzhou XU, Han ZENG, Keshi ZHANG, Wenping SONG. Optimal control efficiency characteristics and wide-speed-range aerodynamic design optimization method for grid fins of launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 129887.
1 | 包为民. 可重复使用运载火箭技术发展综述[J]. 航空学报, 2023, 44(23): 629555. |
BAO W M. A review of reusable launch vehicle technology development[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629555 (in Chinese). | |
2 | Clark Stephen, 艾麦乐. SpaceX回收火箭迈出关键一步[J]. 求知导刊, 2014(4): 34-37. |
STEPHEN C, AI M L. SpaceX takes a key step in recycling rockets[J]. Journal of Seeking Knowledge Guide, 2014(4): 34-37 (in Chinese). | |
3 | 贾洪印, 张培红, 赵炜, 等. 火箭子级垂直回收布局气动特性及发动机喷管影响[J]. 航空学报, 2021, 42(2): 623995. |
JIA H Y, ZHANG P H, ZHAO W, et al. Aerodynamic characteristics of vertical recovery of rocket sub-stage and influence of engine nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 623995 (in Chinese). | |
4 | 杜涛, 牟宇, 杨建民, 等. CZ-2C子级落区栅格舵的气动设计实践及发展展望[J]. 导弹与航天运载技术(中英文), 2023(3): 20-26. |
DU T, MOU Y, YANG J M, et al. Practices and prospects for aerodynamic design of CZ-2C first stage landing area control with grid fin project[J]. Missiles and Space Vehicles, 2023(3): 20-26 (in Chinese). | |
5 | HUGHSON M, BLADES E, ABATE G. Transonic aerodynamic analysis of lattice grid tail fin missiles[C]∥ 24th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2006. |
6 | SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. |
7 | BROOKS R A, BURKHALTER J E. Experimental and analytical analysis of grid fin configurations[J]. Journal of Aircraft, 1989, 26(9): 885-887. |
8 | WASHINGTON W, MILLER M. Grid fins—A new concept for missile stability and control[C]∥31st Aerospace Sciences Meeting. Reston: AIAA, 1993. |
9 | MILLER M, WASHINGTON W. An experimental investigation of grid fin drag reduction techniques[C]∥ 12th Applied Aerodynamics Conference. Reston: AIAA, 1994. |
10 | GUYOT D, SCHÜLEIN E. Novel locally swept lattice wings for missile control at high speeds[C]∥ 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
11 | ABATE G, DUCKERSCHEIN R, HATHAWAY W. Subsonic/transonic free-flight tests of a generic missile with grid fins[C]∥38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. |
12 | ABATE G, WINCHENBACH G, HATHAWAY W. Transonic aerodynamic and scaling issues for lattice fin projectiles tested in a ballistics range[C]∥19th International Symposium of Ballistics. Thun, Switzerland: IBS 2001 Symposium Office, 2001: 413-420. |
13 | 雷娟棉, 吴小胜, 吴甲生. 格栅尾翼(舵)外形参数对气动特性的影响[J]. 北京理工大学学报, 2007, 27(8): 675-679. |
LEI J M, WU X S, WU J S. Effect of grid fin geometric parameter to the aerodynamic characteristics[J]. Transactions of Beijing Institute of Technology, 2007, 27(8): 675-679 (in Chinese). | |
14 | CHEN S Z, KHALID M, XU H Y, et al. A comprehensive CFD investigation of grid fins as efficient control surface devices[C]∥38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. |
15 | THEERTHAMALAI P, BALAKRISHNAN N. Effect of geometric parameters on the aerodynamic characteristics of grid-fin cells at supersonic speeds[C]∥ 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
16 | 杜涛, 许晨舟, 王国辉, 等. 人工智能气动特性预测技术在火箭子级落区控制项目的应用[J]. 宇航学报, 2021, 42(1): 61-73. |
DU T, XU C Z, WANG G H, et al. The application of aerodynamic coefficients prediction technique via artificial intelligence method to rocket first stage landing area control project[J]. Journal of Astronautics, 2021, 42(1): 61-73 (in Chinese). | |
17 | 杜涛, 龚安龙, 唐伟, 等. 局部后掠型栅格舵的气动特性研究[J]. 宇航总体技术, 2021, 5(2): 14-23. |
DU T, GONG A L, TANG W, et al. Research on aerodynamic characteristic of locally swept grid fins[J]. Astronautical Systems Engineering Technology, 2021, 5(2): 14-23 (in Chinese). | |
18 | 李永红, 黄勇, 陈建中, 等. 曲面形栅格翼气动特性研究[J]. 空气动力学学报, 2016, 34(4): 536-540. |
LI Y H, HUANG Y, CHEN J Z, et al. Investigation of aerodynamic characteristics on circular-arc grid-fin configurations[J]. Acta Aerodynamica Sinica, 2016, 34(4): 536-540 (in Chinese). | |
19 | 李永红, 杨晓娟, 陈建中, 等. 超声速栅格舵/弹身干扰特性数值模拟与试验研究[J]. 北京航空航天大学学报, 2021, 47(5): 953-960. |
LI Y H, YANG X J, CHEN J Z, et al. Numerical simulation and test investigation on interference characteristics of grid fins with missile body at supersonic speed[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 953-960 (in Chinese). | |
20 | 张培红, 贾洪印, 郭勇颜, 等. 基于FlowStar软件的栅格舵气动特性模拟[J]. 计算力学学报, 2022, 39(4): 531-538. |
ZHANG P H, JIA H Y, GUO Y Y, et al. Aerodynamic characteristics simulation of grid rudder using FlowStar software[J]. Chinese Journal of Computational Mechanics, 2022, 39(4): 531-538 (in Chinese). | |
21 | 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3): 020891. |
ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field: Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 020891 (in Chinese). | |
22 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese). | |
23 | 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5): 121736. |
QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121736 (in Chinese). | |
24 | 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480. |
CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480 (in Chinese). | |
25 | LIU F, HAN Z H, ZHANG Y, et al. Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance[J]. Aerospace Science and Technology, 2019, 93: 105345. |
26 | 孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报, 2018, 39(6): 121737. |
SUN X C, HAN Z H, LIU F, et al. Design and analysis of hypersonic vehicle airfoil/wing at wide-range Mach numbers[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 121737 (in Chinese). | |
27 | 李永红. 栅格翼气动特性数值模拟与外形参数优化研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012: 25-51. |
LI Y H. Numerical investigations on aerodynamic characteristics and shape optimization of grid fins[D]. Mianyang: China Aerodynamic Research and Development Center, 2012: 25-51 (in Chinese). | |
28 | PENG K, HU F, WANG D H, et al. Grid fins shape design of a launch vehicle based on sequential approximation optimization[J]. Advances in Space Research, 2018, 62(7): 1863-1878. |
29 | LEDLOW T W, BURKHALTER J E, HARTFIELD R J. Integration of grid fins for the optimal design of missile systems[C]∥ AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2015. |
30 | ORTHNER K S. Aerodynamic analysis of lattice grids in transonic flow[D]. Ohio: Air Force Institute of Technology, 2004. |
31 | ZENG Y, CAI J S, DEBIASI M, et al. Numerical study on drag reduction for grid-fin configurations[C]∥ 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
32 | TRIPATHI M, SUCHEENDRAN M M, MISRA A. Flow field characterization and visualization of grid fin subsonic flow[J]. Journal of Fluids Engineering, 2019, 141(10): 101401. |
33 | MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55. |
34 | HAN Z H. SurroOpt: A generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]∥30th Congress of the International Council of the Aeronautical Sciences. Daejeon: ICAS, 2016. |
[1] | 刘琦, 史勇杰, 胡志远, 徐国华. 共轴刚性旋翼气动及噪声特性的参数影响分析[J]. 航空学报, 2024, 45(9): 528856-528856. |
[2] | 崔壮壮, 原昕, 赵国庆, 井思梦, 招启军. 共轴刚性旋翼高速直升机前飞性能操纵策略影响[J]. 航空学报, 2024, 45(9): 529256-529256. |
[3] | 柳家齐, 陈荣钱, 楼锦华, 韩旭, 吴昊, 尤延铖. 基于深度学习的高速直升机旋翼翼型气动优化设计[J]. 航空学报, 2024, 45(9): 529828-529828. |
[4] | 陈树生, 冯聪, 张兆康, 赵轲, 张新洋, 高正红. 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计[J]. 航空学报, 2024, 45(6): 629596-629596. |
[5] | 李玉涵, 杨宝玉, 吴亦农, 张强, 唐晓. 卫星光机载荷热模型参数高效修正方法研究进展[J]. 航空学报, 2024, 45(6): 628814-628814. |
[6] | 纪鉴恒, 蔡尊, 王泰宇, 孙明波, 王振国. 宽速域超燃冲压发动机流动燃烧过程研究进展[J]. 航空学报, 2024, 45(3): 28696-028696. |
[7] | 郭振东, 李豪杰, 宋立明, 张华良, 尹钊. 基于自适应稀疏混沌多项式的鲁棒性优化方法[J]. 航空学报, 2024, 45(19): 630273-630273. |
[8] | 张永杰, 周静飘, 石磊, 李栋, 张彬乾. 基于PRSEUS结构的翼身融合民机中央机体球亏面框优化设计方法[J]. 航空学报, 2024, 45(12): 229331-229331. |
[9] | 陆凤霞, 韦坤, 王春雷, 鲍和云, 朱如鹏. 直升机中减三相流金属屑末可达性[J]. 航空学报, 2024, 45(1): 128524-128524. |
[10] | 任炯, 王刚, 胡国栋, 石晓露. 自适应Walsh函数有限体积方法[J]. 航空学报, 2023, 44(8): 127444-127444. |
[11] | 马印锴, 李祝飞, 黄琪, 杨基明. 宽速域翼尖涡及其与斜激波相互作用[J]. 航空学报, 2023, 44(7): 38-50. |
[12] | 赵欢, 高正红, 夏露. 基于新型多可信度代理模型的多目标优化方法[J]. 航空学报, 2023, 44(6): 126962-126962. |
[13] | 曹文博, 刘溢浪, 张伟伟. 基于降阶模型和梯度优化的流场加速收敛方法[J]. 航空学报, 2023, 44(6): 127090-127090. |
[14] | 赵欢, 高正红, 夏露. 基于新型高维代理模型的气动外形设计方法[J]. 航空学报, 2023, 44(5): 126924-126924. |
[15] | 刘超宇, 屈峰, 孙迪, 刘传振, 钱战森, 白俊强. 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报, 2023, 44(4): 126664-126664. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学