| 1 |
刘莉, 曹潇, 张晓辉, 等. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报, 2020, 41(3): 623474.
|
|
LIU L, CAO X, ZHANG X H, et al. Review of development of light and small scale solar/hydrogen powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623474 (in Chinese).
|
| 2 |
TAN C Q, SUN F C, KONG T, et al. A survey on deep transfer learning[C]∥Artificial Neural Networks and Machine Learning-ICANN 2018. Cham: Springer International Publishing, 2018: 270-279.
|
| 3 |
强碧瑶, 史恺宁, 任学军, 等. 基于实例迁移学习的跨工况刀具剩余寿命预测[J]. 航空学报, 2024, 45(13): 629038.
|
|
QIANG B Y, SHI K N, REN J X, et al. Instance transfer for tool remaining useful life prediction cross working conditions[J]. Acta Aeronautica et Astronautica Sinica,2024, 45(13): 629038 (in Chinese).
|
| 4 |
廖奕校. 基于多源域知识迁移的旋转机械智能故障诊断方法研究[D]. 广州: 华南理工大学, 2022.
|
|
LIAO Y X. Research on intelligent fault diagnosis method of rotating machinery based on multi-source domain knowledge transfer[D]. Guangzhou: South China University of Technology, 2022 (in Chinese).
|
| 5 |
GUPTA L, EDELEN A, NEVEU N, et al. Improving surrogate model accuracy for the LCLS-II injector frontend using convolutional neural networks and transfer learning[J]. Machine Learning: Science and Technology, 2021, 2(4): 045025.
|
| 6 |
TIAN K, LI Z C, ZHANG J X, et al. Transfer learning based variable-fidelity surrogate model for shell buckling prediction[J]. Composite Structures, 2021, 273: 114285.
|
| 7 |
PENG L, WU H, GAO M, et al. TLT: Recurrent fine-tuning transfer learning for water quality long-term prediction[J]. Water Research, 2022, 225: 119171.
|
| 8 |
SEO W, PARK S W, KIM N, et al. A personalized blood glucose level prediction model with a fine-tuning strategy: A proof-of-concept study[J]. Computer Methods and Programs in Biomedicine, 2021, 211: 106424.
|
| 9 |
NASIR M U, GHAZAL T M, KHAN M A, et al. Breast cancer prediction empowered with fine-tuning[J]. Computational Intelligence and Neuroscience, 2022, 2022(1): 5918686.
|
| 10 |
YANG D, LIU L, BAI W C, et al. Conceptual design and configurations selection of S/H-UAVs based on Q-rung dual hesitant double layer FQFD[J]. Chinese Journal of Aeronautics, 2024, 37(9): 193-205.
|
| 11 |
LIU L, BAI W C, YANG D. Flight endurance increasing technology of new energy UAV based on a strut-braced wing[J]. International Journal of Aerospace Engineering, 2022, 2022(1): 4868037.
|
| 12 |
蔚光辉. 绿色能源小型电动无人机总体设计[D]. 北京: 北京理工大学, 2018.
|
|
YU G H. Overall design of small electric UAV with green energy[D]. Beijing: Beijing Institute of Technology, 2018 (in Chinese).
|
| 13 |
GE W F, YU Y Z. Borrowing treasures from the wealthy: Deep transfer learning through selective joint fine-tuning[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 10-19.
|
| 14 |
PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210.
|
| 15 |
LI W, DUAN L X, XU D, et al. Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1134-1148.
|
| 16 |
BAO R X, SUN Y M, GAO Y H, et al. A recent survey of heterogeneous transfer learning[EB/OL]. arXiv preprint: 2310.08459, 2023. .
|
| 17 |
GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2012: 2066-2073.
|
| 18 |
BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(14): e49-57.
|
| 19 |
GRETTON A, SRIPERUMBUDUR B, SEJDINOVIC D, et al. Optimal kernel choice for large-scale two-sample tests[C]∥Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 1. New York: ACM, 2012: 1205-1213.
|
| 20 |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
|
| 21 |
HINTON G. Deep belief networks[J]. Scholarpedia, 2009, 4(5): 5947.
|
| 22 |
SCABINI L F S, BRUNO O M. Structure and performance of fully connected neural networks: Emerging complex network properties[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 615: 128585.
|
| 23 |
DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part II: Handling Constraints and Extending to an Adaptive Approach[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622.
|
| 24 |
LI K, DEB K, ZHANG Q F, et al. An evolutionary many-objective optimization algorithm based on dominance and decomposition[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(5): 694-716.
|