航空学报 > 2025, Vol. 46 Issue (9): 630979-630979   doi: 10.7527/S1000-6893.2024.30979

基于多源域融合代理模型的氢能无人机优化设计

李荣祖, 刘莉(), 杨盾   

  1. 北京理工大学 宇航学院,北京 100081
  • 收稿日期:2024-07-22 修回日期:2024-10-10 接受日期:2024-11-22 出版日期:2024-12-06 发布日期:2024-12-05
  • 通讯作者: 刘莉 E-mail:liuli@bit.edu.cn

Optimal design of hydrogen-powered UAV based on multi-source domain fusion surrogate model

Rongzu LI, Li LIU(), Dun YANG   

  1. School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
  • Received:2024-07-22 Revised:2024-10-10 Accepted:2024-11-22 Online:2024-12-06 Published:2024-12-05
  • Contact: Li LIU E-mail:liuli@bit.edu.cn

摘要:

针对氢能电动无人机(H-UAVs)的总体设计阶段的优化问题,探讨了在异构多源域情况下如何有效利用迁移学习技术建立代理模型并进行优化。为了解决氢能电动无人机演化过程中异构样本所导致的建模样本获取成本高昂的问题,提出了一种基于数据生成的多源域融合(DG-MSF)代理模型建立框架,通过测地线流式核方法将异构的源域和目标域映射到高维空间中确定多源域的关系;使用基于边缘分布的数据生成方法,实现了对源域信息的有效融合;构建了一个基于多层感知器的神经网络作为代理模型,并通过预训练与微调的方法完成迁移,实现了对氢能电动无人机性能的高效预测,最后对氢能电动无人机进行了优化设计。分析结果表明,方法能够有效利用多源域数据,提高模型训练的效率和预测的准确性,实现了氢能电动无人机总体优化性能的提升,为氢能电动无人机的发展提供了有力的技术支持。

关键词: 氢能电动无人机, 迁移学习, 代理模型, 多目标优化, 多源域, 预训练-微调

Abstract:

This paper addresses the optimization problem of the overall design stage of Hydrogen-powered Unmanned Aerial Vehicles (H-UAVs) in the context of heterogeneous multi-source domains. It explores how to effectively utilize the transfer learning technology to establish a surrogate model and optimize H-UAVs in the presence of heterogeneous samples. To solve the problem of high cost of building a surrogate model due to heterogeneous samples during the evolution of hydrogen-powered UAVs, a framework for establishing a Multi-Source domain Fusion (DG-MSF) surrogate model is proposed based on Data Generation. The geodesic flow kernel method is used to map the heterogeneous source and target domains to a high-dimensional space to determine the relationship between multi-source domains. The marginal distribution-based data generation method is used to effectively integrate source domain information. A multi-layer perceptron neural network is built as a surrogate model, and is trained and fine-tuned through pre-training and fine-tuning methods to achieve efficient prediction of performance of H-UAVs. Finally, the optimization design of the H-UAV is carried out. The analysis results show that the proposed method can effectively utilize multi-source domain data to improve the efficiency of model training and prediction accuracy and the overall performance of H-UAVs, providing powerful technical support for the development of H-UAVs.

Key words: hydrogen-powered unmanned aerial vehicle (H-UAV), transfer learning, surrogate model, multi-objective optimization, multi-source domain, pre-training fine-tuning

中图分类号: