1 |
杨强, 解维华, 彭祖军, 等. 热防护设计分析技术发展中的新概念与新趋势[J]. 航空学报, 2015, 36(9): 2981-2991.
|
|
YANG Q, XIE W H, PENG Z J, et al. New concepts and trends in development of thermal protection design and analysis technology[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2981-2991 (in Chinese).
|
2 |
孟松鹤, 刘人汇, 杨强. 美国高速飞行器相关材料技术发展态势分析与认识[J]. 飞航导弹, 2021(6): 99-104.
|
|
MENG S H, LIU R H, YANG Q. Analysis and understanding of the development trend of materials technology related to high-speed aircraft in the United States[J]. Aerospace Technology, 2021(6): 99-104 (in Chinese).
|
3 |
张军, 李伟, 方国东, 等. 树脂基防隔热复合材料高温响应分析方法研究进展[J]. 宇航学报, 2020, 41(6): 739-748.
|
|
ZHANG J, LI W, FANG G D, et al. Review of high temperature response analysis of resin matrix thermal protection and insulation composites[J]. Journal of Astronautics, 2020, 41(6): 739-748 (in Chinese).
|
4 |
ZHANG X H, HU P, HAN J C, et al. Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions[J]. Composites Science and Technology, 2008, 68(7-8): 1718-1726.
|
5 |
PRABHU D, PAPADOPOULOS P, DAVIES C, et al. Shuttle orbiter contingency abort aerodynamics, II: Real-gas effects and high angles of attack[C]∥Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003: AIAA2003-1248.
|
6 |
HOLDEN M, WADHAMS T, MACLEAN M, et al. Experimental studies in LENS I and X to evaluate real gas effects on hypevelocity vehicle performance[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: AIAA2007-204.
|
7 |
SCHWANEKAMP T, BÜTÜNLEY J, SIPPEL D M. Preliminary multidisciplinary design studies on an upgraded 100 passenger SpaceLiner derivative[C]∥Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012: AIAA2012-5808.
|
8 |
CANDLER G V. Rate effects in hypersonic flows[J]. Annual Review of Fluid Mechanics, 2019, 51: 379-402.
|
9 |
周印佳, 孟松鹤, 解维华, 等. 高超声速飞行器热环境与结构传热的多场耦合数值研究[J]. 航空学报, 2016, 37(9): 2739-2748.
|
|
ZHOU Y J, MENG S H, XIE W H, et al. Multi-field coupling numerical analysis of aerothermal environment and structural heat transfer of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2739-2748 (in Chinese).
|
10 |
YANG Q, GAO B, XU Z, et al. Topology optimisations for integrated thermal protection systems considering thermo-mechanical constraints[J]. Applied Thermal Engineering, 2019, 150: 995-1001.
|
11 |
YANG X F, GUI Y W, XIAO G M, et al. Reacting gas-surface interaction and heat transfer characteristics for high-enthalpy and hypersonic dissociated carbon dioxide flow[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118869.
|
12 |
JOSYULA E, LIEUWEN T C. Hypersonic nonequilibrium flows: Fundamentals and recent advances[M]. Reston: American Institute of Aeronautics and Astronautics, Inc., 2015.
|
13 |
梁伟, 金华, 孟松鹤, 等. 高超声速飞行器新型热防护机制研究进展[J]. 宇航学报, 2021, 42(4): 409-424.
|
|
LIANG W, JIN H, MENG S H, et al. Research progress on new thermal protection mechanism of hypersonic vehicles[J]. Journal of Astronautics, 2021, 42(4): 409-424 (in Chinese).
|
14 |
BERTIN J J, CUMMINGS R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38: 129-157.
|
15 |
时圣波,雷宝,张云天, 等.硅橡胶基防热涂层烧蚀和热响应特性预报方法[J]. 航空学报, 2023, 44(22): 428141.
|
|
SHI S B, LEI B, ZHANG Y T, et al. Prediction method of ablation and thermal response for a thermal protection coating with silicone rubber [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 428141 (in Chinese).
|
16 |
SHI S B, WANG Y F, YAN L, et al. Coupled ablation and thermal behavior of an all-composite structurally integrated thermal protection system: Fabrication and modeling[J]. Composite Structures, 2020, 251: 112623.
|
17 |
PARK C. Nonequilibrium hypersonic aerothermodynamics[M]. New York: Wiley International, 1989.
|
18 |
PARK C. Assessment of two-temperature kinetic model for ionizing air[J]. Journal of Thermophysics and Heat Transfer, 1989, 3(3): 233-244.
|
19 |
KEENAN J, CANDLER G. Simulation of ablation in Earth atmospheric entry[C]∥Proceedings of the 28th Thermophysics Conference. Reston: AIAA, 1993: AIAA1993-2789.
|
20 |
CASSEAU V, PALHARINI R, SCANLON T, et al. A two-temperature open-source CFD model for hypersonic reacting flows, part one: Zero-dimensional analysis[J]. Aerospace, 2016, 3(4): 34.
|
21 |
CASSEAU V, ESPINOZA D, SCANLON T, et al. A two-temperature open-source CFD model for hypersonic reacting flows, part two: Multi-dimensional analysis[J]. Aerospace, 2016, 3(4): 45.
|
22 |
WANG Y Q, RISCH T K, KOO J H. Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator[J]. Aerospace Science and Technology, 2019, 91: 301-309.
|
23 |
BIANCHI D, MIGLIORINO M T, ROTONDI M, et al. Numerical analysis and wind tunnel validation of low-temperature ablators undergoing shape change[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121430.
|
24 |
CHEN W. Numerical analyses of ablative behavior of C/C composite materials[J]. International Journal of Heat and Mass Transfer, 2016, 95: 720-726.
|
25 |
LI W J, HUANG H M, XU X L. A coupled thermal/fluid/chemical/ablation method on surface ablation of charring composites[J]. International Journal of Heat and Mass Transfer, 2017, 109: 725-736.
|
26 |
GOVERAPET S S, VAN DUIN ADRI C T, GANESH P. Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene[J]. The Journal of Physical Chemistry A, 2015, 119(4): 571-80.
|
27 |
ASHRAF C, VAN DUIN A C T. Extension of the ReaxFF combustion force field toward syngas combustion and initial oxidation kinetics[J]. The Journal of Physical Chemistry A, 2017, 121(5): 1051-1068.
|
28 |
JIANG D E, VAN DUIN A C T, GODDARD W A III, et al. Simulating the initial stage of phenolic resin carbonization via the ReaxFF reactive force field[J]. The Journal of Physical Chemistry A, 2009, 113(25): 6891-6894.
|
29 |
HARPALE A, SAWANT S, KUMAR R, et al. Ablative thermal protection systems: Pyrolysis modeling by scale-bridging molecular dynamics[J]. Carbon, 2018, 130: 315-324.
|
30 |
CUI Z L, YE Z F, ZHAO J, et al. Coupled surface-volume pyrolysis effects of carbon-phenolic resin composites under hyperthermal non-equilibrium flows[J]. Physics of Fluids, 2022, 34(6): 062117.
|
31 |
CUI Z L, ZHAO J, YAO G C, et al. Molecular insight of the interface evolution of silicon carbide under hyperthermal atomic oxygen impact[J]. Physics of Fluids, 2022, 34(5): 052101.
|
32 |
CUI Z L, ZHAO J, YAO G C, et al. Competing effects of surface catalysis and ablation in hypersonic reentry aerothermodynamic environment[J]. Chinese Journal of Aeronautics, 2022, 35(10): 56-66.
|
33 |
CUI Z L, ZHAO J, HE L C, et al. A reactive molecular dynamics study of hyperthermal atomic oxygen erosion mechanisms for graphene sheets[J]. Physics of Fluids, 2020, 32(11): 112110.
|
34 |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
|
35 |
VAN DUIN A C, DASGUPTA S, LORANT F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-409.
|
36 |
HAN J C, HE X D, DU S Y. Oxidation and ablation of 3D carbon-carbon composite at up to 3 000 ℃[J]. Carbon, 1995, 33(4): 473-478.
|
37 |
WU H, LI H J, FU Q G, et al. Microstructures and ablation resistance of ZrC coating for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying[J]. Journal of Thermal Spray Technology, 2011, 20(6): 1286-1291.
|
38 |
WANG Y L, XIONG X A, LI G D, et al. Microstructure and ablation behavior of hafnium carbide coating for carbon/carbon composites[J]. Surface and Coatings Technology, 2012, 206(11-12): 2825-2832.
|
39 |
WANG S L, LI K Z, LI H J, et al. Microstructure and ablation resistance of ZrC nanostructured coating for carbon/carbon composites[J]. Materials Letters, 2013, 107: 99-102.
|
40 |
WANG S L, LI K Z, LI H J, et al. Structure evolution and ablation behavior of ZrC coating on C/C composites under single and cyclic oxyacetylene torch environment[J]. Ceramics International, 2014, 40(10): 16003-16014.
|
41 |
FENG T, LI H J, HU M H, et al. Oxidation and ablation resistance of Fe2O3 modified ZrB2-SiC-Si coating for carbon/carbon composites[J]. Ceramics International, 2016, 42(1): 270-278.
|
42 |
WANG Y J, LI H J, FU Q G, et al. SiC/HfC/SiC ablation resistant coating for carbon/carbon composites[J]. Surface and Coatings Technology, 2012, 206(19-20): 3883-3887.
|
43 |
BAHRAMIAN A R, KOKABI M, FAMILI M H N, et al. Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: process modeling and experimental[J]. Polymer, 2006, 47(10): 3661-3673.
|
44 |
YUM S H, KIM S H, LEE W I, et al. Improvement of ablation resistance of phenolic composites reinforced with low concentrations of carbon nanotubes[J]. Composites Science and Technology, 2015, 121: 16-24.
|
45 |
DUAN L, ZHAO X, WANG Y. Oxidation and ablation behaviors of carbon fiber/phenolic resin composites modified with borosilicate glass and polycarbosilane interface[J]. Journal of Alloys Compounds, 2020, 827: 154277.
|