[1] Zheng Y, Chen J, Ju Y T, et al. Heat transfer of solid rocket motor[M]. Beijing: Beihang University Press, 2006: 166-174 (in Chinese). 郑亚, 陈军, 鞠玉涛, 等. 固体火箭发动机传热学[M]. 北京: 北京航空航天大学出版社, 2006: 166-174.
[2] Koo J H, Ho D W H, Ezekoye O A. A review of numerical and experimental characterization of thermal protection materials: Part 1, numerical modeling, AIAA-2006-4936[R]. Reston: AIAA, 2006.
[3] Zheng X Y, Chen F M, Cai F C. Strategy of thermo-structure coupled computation for composite nozzle[J]. Journal of Aerospace Power, 2011, 26(1): 223-227 (in Chinese). 郑晓亚, 陈凤明, 蔡飞超. 复合喷管热结构耦合计算的一种策略[J]. 航空动力学报, 2011, 26(1): 223-227.
[4] Wang T B, Xue T S, Zhou C S, et al. Numerical calculation of temperature and stress field of complex nozzle[J]. Journal of Ballistics, 2012, 24(2): 88-91 (in Chinese). 王天波, 薛谈顺, 周长省, 等. 复合结构喷管温度场及应力场数值模拟[J]. 弹道学报, 2012, 24(2): 88-91.
[5] Tian S P, Tang G J, Li D K, et al. Gap design of solid rocket motor nozzle structures[J]. Journal of Propulsion Technology, 2005, 26(5): 448-451 (in Chinese). 田四朋, 唐国金, 李道奎, 等. 固体火箭发动机喷管结构缝隙设计[J]. 推进技术, 2005, 26(5): 448-451.
[6] Morozov E V, de la Beaujardiere J F P. Numerical simulation of the dynamic thermostructural response of a composite rocket nozzle throat[J]. Composite Structures, 2009, 91(4): 412-420.
[7] He G Q, He H Q, Mao G W. Calculation of "step effect" in the divergent section of nozzle[J]. Journal of Propulsion Technology, 1990, 6(3): 19-22 (in Chinese). 何国强, 何洪庆, 毛根旺. 喷管扩张段烧蚀的 "台阶效应"计算[J]. 推进技术, 1990, 6(3): 19-22.
[8] Daimon Y, Shimada T, Tsuboi N, et al. Evaluation of ablation and longitudinal vortices in solid rocket motor by computational fluid dynamics, AIAA-2006-5243[R]. Reston: AIAA, 2006.
[9] Zhang X G, Wang C H, Liu Y, et al. Carbon-based nozzle thermochemical erosion characteristics in solid rocket motors[J]. Journal of Propulsion Technology, 2012, 33(1): 93-97 (in Chinese). 张晓光, 王长辉, 刘宇, 等. 固体火箭发动机碳基材料喷管热化学烧蚀特性[J]. 推进技术, 2012, 33(1): 93-97.
[10] Thakre P, Yang V. Chemical erosion of carbon-carbon/graphite nozzles in solid-propellant rocket motors[J]. Journal of Propulsion and Power, 2008, 24(4): 822-833.
[11] Bianchi D, Nasuti F, Martelli E. Coupled analysis of flow and surface ablation in carbon-carbon rocket nozzles[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 492-500.
[12] Turchi A, Bianchi D, Nasuti F, et al. A numerical approach for the study of the gas-surface interaction in carbon-phenolic solid rocket nozzles[J]. Aerospace Science and Technology, 2013, 27(1): 25-31.
[13] Bianchi D, Nasuti F, Onofri M, et al. Thermochemical erosion analysis for chraphite/carbon-carbon rocket nozzles[J]. Journal of Propulsion and Power, 2011, 27(1): 197-205.
[14] Peng L, He G, Li J, et al. Effect of combustion gas mass flow rate on carbon/carbon composite nozzle ablation in a solid rocket motor[J]. Carbon, 2012, 50(4): 1554-1562.
[15] Evans B. Nozzle erosion characterization and minimization for high-pressure rocket motor applications[D]. Pennsylvania: Pennsylvania State University, 2010.
[16] Menter F R. Two-equation eddy-viscosity turbulence modelsfor engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[17] Blazek J. Computational fluid dynamics: principles and applications[M]. Amsterdam: Elsevier, 2001.
[18] Zhang L P, Wang Z J. A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes[J]. Computers & Fluids, 2004, 33(7): 891-916.
[19] Sajben M, Bogar T J, Kroutil J C. Forced oscillation experiments in supercritical diffuser flows[J]. AIAA Journal,1984, 22(4): 465-474.
[20] Thakre P, Rawat R, Clayton R, et al. Mechanical erosion of graphite nozzle in solid-propellant rocket motor[J]. Journal of Propulsion and Power, 2013, 29(3): 593-601. |