1 |
李梓源, 于剑桥, 李佳讯. 基于H-BSO算法的导弹敏捷转弯弹道优化[J]. 战术导弹技术, 2023(3): 32-41.
|
|
LI Z Y, YU J Q, LI J X. Ballistic optimization of missile agile turning based on H-BSO algorithm[J]. Tactical Missile Technology, 2023(3): 32-41 (in Chinese).
|
2 |
李政, 于剑桥, 赵新运. 空空导弹敏捷转弯固定时间收敛滑模控制[J]. 航空学报, 2023, 44(8): 327262.
|
|
LI Z, YU J Q, ZHAO X Y. Fixed-time convergent sliding mode control for agile turn of air-to-air missiles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 327262 (in Chinese).
|
3 |
赵新运, 于剑桥. 导弹敏捷转弯段的新型非奇异终端滑模控制[J]. 宇航学报, 2022, 43(4): 454-464.
|
|
ZHAO X Y, YU J Q. Novel non-singular terminal sliding mode control for missile’s agile turn[J]. Journal of Astronautics, 2022, 43(4): 454-464 (in Chinese).
|
4 |
WISE K A, ROY D J B. Agile missile dynamics and control[J]. Journal of Guidance,Control,and Dynamics, 1998, 21(3): 441-449.
|
5 |
CHADWICK W R. Augmentation of high-altitude maneuver performance of a tail-controlled missile using lateral thrust: ADA-328973[R]. Belvoir: Defense Technical Information Center, 1997.
|
6 |
侯满义, 解增辉, 范惠林. 复合控制空空导弹大机动控制律设计及仿真[J]. 弹道学报, 2011, 23(4): 22-26.
|
|
HOU M Y, XIE Z H, FAN H L. Control law design and simulation for high maneuvering air-to-air missile with compound control[J]. Journal of Ballistics, 2011, 23(4): 22-26 (in Chinese).
|
7 |
纪彦宇. 直/气复合控制拦截弹控制策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
JI Y Y. Research on control & strategy method of side-jet & aerodynamic fins compound of intercoptor missile[D].Harbin: Harbin Institute of Technology, 2018 (in Chinese).
|
8 |
彭继平. 敏捷空空导弹复合控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
|
PENG J P. Research on blended control of agile air-to-air missile[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese).
|
9 |
马悦悦. 敏捷导弹大攻角高机动飞行控制方法研究[D]. 北京: 北京理工大学, 2016.
|
|
MA Y Y. Research on flight control design under high angle of attack maneuvering for agile missiles[D].Beijing: Beijing Institute of Technology, 2016 (in Chinese).
|
10 |
李宇辉, 赵敏, 陈奇, 等. 复杂环境下翼伞系统的组合式航迹规划[J]. 航空学报, 2021, 42(6): 324566.
|
|
LI Y H, ZHAO M, CHEN Q, et al. Combined trajectory planning of parafoil systems in complex environments[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324566 (in Chinese).
|
11 |
朱虹, 孙青林, 邬婉楠, 等. 伞翼无人机精确建模与控制[J]. 航空学报, 2019, 40(6): 122593.
|
|
ZHU H, SUN Q L, WU W N, et al. Accurate modeling and control for parawing unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 122593 (in Chinese).
|
12 |
朱旭, 曹义华. 翼伞弧面下反角、翼型和前缘切口对翼伞气动性能的影响[J]. 航空学报, 2012, 33(7): 1189-1200.
|
|
ZHU X, CAO Y H. Effects of arc-anhedral angle,airfoil and leading edge cut on parafoil aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1189-1200 (in Chinese).
|
13 |
陈奇, 赵敏, 赵志豪, 等. 多自主翼伞系统建模及其集结控制[J]. 航空学报, 2016, 37(10): 3121-3130.
|
|
CHEN Q, ZHAO M, ZHAO Z H, et al. Multiple autonomous parafoils system modeling and rendezvous control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3121-3130 (in Chinese).
|
14 |
FIELDS T D. Evaluation of control line reefing systems for circular parachutes[J]. Journal of Aircraft, 2016, 53(3): 855-860.
|
15 |
FAGLEY C P, SEIDEL J, MCLAUGHLIN T E, et al. Computational study of air drop control mechanisms for cruciform parachutes[C]∥ 24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2017.
|
16 |
黄云尧, 武士轻, 张扬. 几何形状对十字伞充气和滑翔性能的影响[J]. 航天返回与遥感, 2022, 43(5): 48-58.
|
|
HUANG Y Y, WU S Q, ZHANG Y. Effects of geometry on the inflation and gliding performance of cruciform parachutes[J]. Spacecraft Recovery & Remote Sensing, 2022, 43(5): 48-58 (in Chinese).
|
17 |
DELLICKER S, BENNEY R, PATEL S, et al. Performance,control,and simulation of the Affordable Guided Airdrop System[C]∥ Modeling and Simulation Technologies Conference. Reston: AIAA, 2000.
|
18 |
POTVIN J, PAPKE J, BRIGHTON E, et al. Glide performance study of standard and hybrid cruciform parachutes[C]∥ 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2003.
|
19 |
GAO X L, ZHANG Q B, CHEN Q, et al. Fluid-structure interactions on steerable cruciform parachute inflation dynamics[J]. IOP Conference Series: Materials Science and Engineering, 2020, 751(1): 012010.
|
20 |
FIELDS T D, YAKIMENKO O A. The use of a steerable single-actuator cruciform parachute for targeted payload return[C]∥ 2017 IEEE Aerospace Conference. Piscataway: IEEE Press, 2017: 1-8.
|
21 |
HALLER J, FIELDS T, YAKIMENKO O A. Precision aerial delivery with a steerable cruciform parachute[C]∥ 24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2017.
|
22 |
HERRINGTON S, RENZELMAN J, FIELDS T, et al. Modeling and control of a steerable cruciform parachute system through experimental testing[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
|
23 |
HERRINGTON S M, SACKETT T, FIELDS T, et al. Experimental investigation into the effects of geometry on the glide performance of cruciform parachutes[C]∥ AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
|
24 |
马瑞鑫. 圆形降落伞下降轨迹控制研究[D]. 大连: 大连理工大学, 2020.
|
|
MA R X. Research on circular parachute descent trajectory control[D].Dalian: Dalian University of Technology, 2020 (in Chinese).
|
25 |
李龙恩. 局部伞绳收放对降落伞轨迹的影响与投放试验[D]. 大连: 大连理工大学, 2019.
|
|
LI L E. Influence of partial parachute retracting on parachute trajectory and airdrop test[D]. Dalian: Dalian University of Technology, 2019 (in Chinese).
|
26 |
LEVIN D, SHPUND Z. Canopy geometry effect on the aerodynamic behavior of cross-type parachutes[J]. Journal of Aircraft, 1997, 34(5): 648-652.
|
27 |
JORGENSEN D, COCKRELL D. Aerodynamics and performance of cruciform parachute canopies[C]∥ 7th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1981.
|
28 |
JORGENSEN D. Experimental determination of the input parameters to the parachute equations of motion[C]∥ 8th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1984.
|
29 |
STAFFORD J D. Cruciform parachute aerodynamics[D]. Leicester: University of Leicester, 1982.
|
30 |
SHEN C Q. Flow field characteristics around bluff parachute canopies[D]. Leicester: University of Leicester, 1987.
|
31 |
SHEN C Q, COCKRELL D J. Aerodynamic characteristics and flow round cross parachutes in steady motion[J]. Journal of Aircraft, 1988, 25(4): 317-323.
|
32 |
SHEN C, COCKRELL D. Flow field characteristics around cup-like bluff bodies, parachute canopies: AIAA-1991-0855-CP[R]. Reston: AIAA, 1991.
|
33 |
SHPUND Z, LEVIN D. Static and dynamic coefficients of a cross-type parachute[J]. Journal of Aircraft, 1994, 31(1): 132-137.
|
34 |
李周复. 风洞试验手册[M]. 北京: 航空工业出版社, 2015.
|
|
LI Z F. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2015 (in Chinese).
|
35 |
HANCOCK T J, LINGARD J S. Subsonic wind tunnel investigation into the effects of parachute canopy material on inflation time[C]∥ 26th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2022.
|
36 |
孙昊, 孙青林, 滕海山, 等. 复杂环境下考虑动力学约束的翼伞轨迹规划[J]. 航空学报, 2021, 42(3): 324301.
|
|
SUN H, SUN Q L, TENG H S, et al. Trajectory planning for parafoil system considering dynamic constraints in complicated environment[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 324301 (in Chinese).
|
37 |
XUE X P, JIA H, RONG W, et al. Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems[J]. Chinese Journal of Aeronautics, 2022, 35(4): 45-54.
|