1 |
樊会涛, 闫俊. 空战体系的演变及发展趋势[J]. 航空学报, 2022, 43(10): 527397.
|
|
FAN H T, YAN J. Evolution and development trend of air combat system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527397 (in Chinese).
|
2 |
孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799.
|
|
SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525799 (in Chinese).
|
3 |
孙聪. 从空战制胜机理演变看未来战斗机发展趋势[J]. 航空学报, 2021, 42(8): 525826.
|
|
SUN C. Development trend of future fighter: a review of evolution of winning mechanism in air combat[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525826 (in Chinese).
|
4 |
NICHOLS S O. 21st century air-to-air short range weapon requirementsf: AU/ACSC/210/1998-04 [R]. Alabama: Maxwell Air Force Base, 1998.
|
5 |
董一群, 艾剑良. 自主空战技术中的机动决策:进展与展望[J]. 航空学报, 2020, 41(): 724264.
|
|
DONG Y Q, AI J L. Decision making in autonomous air combat: review and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(Sup 2): 724264 (in Chinese).
|
6 |
BURGIN G H. OWENS A J. An adaptive maneuvering logic computer program for the simulation of one-on-one air-to-air combat [R]. Washington D. C.: NASA. 1975.
|
7 |
ISAACS R. Differential games: A mathematical theory with applications to warfare and pursuit, control and optimization[M]. New York: Wiley, 1965
|
8 |
薛羽, 庄毅, 张友益, 等. 基于启发式自适应离散差分进化算法的多UCAV协同干扰空战决策[J]. 航空学报, 2013, 34(2): 343-351.
|
|
XUE Y, ZHUANG Y, ZHANG Y Y, et al. Multiple UCAV cooperative jamming air combat decision making based on heuristic self-adaptive discrete differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 343-351 (in Chinese).
|
9 |
RODIN E Y, LIROV Y, MITTNIK S, et al. Artificial intelligence in air combat games[J]. Computers & Mathematics With Applications, 1987, 13(1-3): 261-274.
|
10 |
ERNEST N, CARROLL D. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016, 6(1), doi: 10.4172/2167-0374.1000144 .
|
11 |
Defense Advanced Research Projects Agency. AlphaDogfight trials go virtual for final event [EB/OL]. (2020-08-07) [2021-03-10]. :.
|
12 |
POPE A P, IDE J S, MIĆOVIĆ D, et al. Hierarchical reinforcement learning for air-to-air combat[C]∥2021 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2021: 275-284.
|
13 |
杜子亮. DARPA“空战进化”项目开启良好开端[J]. 国际航空, 2020(9): 20-22.
|
|
DU Z L. Good start for DARPA’s air combat evolution program[J]. International Aviation, 2020(9): 20-22 (in Chinese).
|
14 |
李磊, 蒋琪, 王彤. 美国DARPA空战演变项目分析[J]. 飞航导弹, 2020(4): 52-58.
|
|
LI L, JIANG Q, WANG T. Analysis of DARPA air combat evolution project in America[J]. Aerodynamic Missile Journal, 2020(4): 52-58 (in Chinese).
|
15 |
左家亮, 杨任农, 张滢, 等. 基于启发式强化学习的空战机动智能决策[J]. 航空学报, 2017, 38(10): 321168.
|
|
ZUO J L, YANG R N, ZHANG Y, et al. Intelligent decision-making in air combat maneuvering based on heuristic reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 321168 (in Chinese).
|
16 |
张强, 杨任农, 俞利新, 等. 基于Q-network强化学习的超视距空战机动决策[J]. 空军工程大学学报(自然科学版), 2018, 19(6): 8-14.
|
|
ZHANG Q, YANG R N, YU L X, et al. BVR air combat maneuvering decision by using Q-network reinforcement learning[J]. Journal of Air Force Engineering University (Natural Science Edition), 2018, 19(6): 8-14 (in Chinese).
|
17 |
张耀中, 许佳林, 姚康佳, 等. 基于DDPG算法的无人机集群追击任务[J]. 航空学报, 2020, 41(10): 324000.
|
|
ZHANG Y Z, XU J L, YAO K J, et al. Pursuit missions for UAV swarms based on DDPG algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 324000 (in Chinese).
|
18 |
施伟, 冯旸赫, 程光权, 等. 基于深度强化学习的多机协同空战方法研究[J]. 自动化学报, 2021, 47(7): 1610-1623.
|
|
SHI W, FENG Y H, CHENG G Q, et al. Research on multi-aircraft cooperative air combat method based on deep reinforcement learning[J]. Acta Automatica Sinica, 2021, 47(7): 1610-1623 (in Chinese).
|
19 |
王壮. 近距空战飞行器智能机动决策生成研究[D]. 成都: 四川大学, 2021.
|
|
WANG Z. Research on intelligent maneuver decision generation of within visual range air combat[D]. Chengdu: Sichuan University, 2021 (in Chinese).
|
20 |
周攀, 黄江涛, 章胜, 等. 基于深度强化学习的智能空战决策与仿真[J]. 航空学报, 2023, 44(4): 126731.
|
|
ZHOU P, HUANG J T, ZHANG S, et al. Intelligent air combat decision and simulation based on deep reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126731 (in Chinese).
|
21 |
符小卫, 徐哲, 朱金冬, 等. 基于PER-MATD3的多无人机攻防对抗机动决策研究[J]. 航空学报, doi: 10.7527/S1000-6893.2022.27083 .
|
|
FU X W, XU Z, ZHU J D, et al. Research on maneuvering decision-making of multi-UAV attack-defence confrontation based on PER-MATD3[J]. Acta Aeronautica et Astronautica Sinica, doi: 10.7527/S1000-6893.2022.27083 (in Chinese).
|
22 |
高飞. 人工智能持续推进DARPA“空战演进”项目将迎来新进展[N]. 中国航空报, 2021-08-31(A09).
|
|
GAO F. Continuous promotion of artificial intelligence, DARPA “Air Combat Evolution” project will usher in new progress [N]. China Aviation News, 2021-08-31(A09)(in Chinese).
|
23 |
杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377.
|
|
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese).
|
24 |
吴森堂, 费玉华. 飞行控制系统[M]. 北京: 北京航空航天大学出版社, 2005: 8-13.
|
|
WU S T, FEI Y H. Flight control[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2005: 8-13 (in Chinese).
|
25 |
王栋, 寇雅楠, 胡涛. 智能空战对抗训练关键技术研究[M]. 北京: 电子工业出版社, 2021.
|
|
WANG D, KOU Y N, HU T. Research on key technologies of intelligent air combat countermeasure training[M]. Beijing: Publishing House of Electronics Industry, 2021 (in Chinese).
|
26 |
李银通, 韩统, 孙楚, 等. 基于逆强化学习的空战态势评估函数优化方法[J]. 火力与指挥控制, 2019, 44(8): 101-106.
|
|
LI Y T, HAN T, SUN C, et al. An optimization method of air combat situation assessment function based on inverse reinforcement learning[J]. Fire Control & Command Control, 2019, 44(8): 101-106 (in Chinese).
|
27 |
赵冬斌, 邵坤, 朱圆恒, 等. 深度强化学习综述: 兼论计算机围棋的发展[J]. 控制理论与应用, 2016, 33(6): 701-717.
|
|
ZHAO D B, SHAO K, ZHU Y H, et al. Review of deep reinforcement learning and discussions on the development of computer Go[J]. Control Theory & Applications, 2016, 33(6): 701-717 (in Chinese).
|
28 |
SILVER D. Tutorial: Deep reinforcement learning, Google DeepMind, 2020[R/OL]. [2022-10-31].. .
|
29 |
FUJIMOTO S, VAN HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[DB/OL]. prepint arXiv: , 2018.
|
30 |
SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay [DB/OL]. prepint arXiv: arXiv: , 2015.
|
31 |
钟友武, 柳嘉润, 杨凌宇, 等. 自主近距空战中机动动作库及其综合控制系统[J]. 航空学报, 2008, 29(): 114-121.
|
|
ZHONG Y W, LIU J R, YANG L Y, et al. Maneuver library and integrated control system for autonomous close-in air combat[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(Sup 1): 114-121 (in Chinese).
|
32 |
STEVENS B L, LEWIS F L, JOHNSON E N. Aircraft control and simulation: Dynamics, controls design, and autonomous systems[M]. 3rd ed. New York: Wiley-Blackwell, 2015.
|