陈艺夫1, 马宇航1, 蓝庆生2, 孙卫平3, 史亚云4, 杨体浩1(
), 白俊强1
收稿日期:2022-05-15
修回日期:2022-06-06
接受日期:2022-06-28
出版日期:2023-04-25
发布日期:2022-07-08
通讯作者:
杨体浩
E-mail:yangtihao@nwpu.edu.cn
基金资助:
Yifu CHEN1, Yuhang MA1, Qingsheng LAN2, Weiping SUN3, Yayun SHI4, Tihao YANG1(
), Junqiang BAI1
Received:2022-05-15
Revised:2022-06-06
Accepted:2022-06-28
Online:2023-04-25
Published:2022-07-08
Contact:
Tihao YANG
E-mail:yangtihao@nwpu.edu.cn
Supported by:摘要:
耦合伴随方法和非嵌入式多项式混沌法,发展了高效、可靠的不确定性梯度优化设计方法。利用伴随方程法求解目标函数对不确定性变量的导数,发展了一种梯度增强型多项式混沌法。通过亚声速和跨声速下等多种算例可以证明该方法可以提高不确定性分析的效率和精度。同时,利用基于方差分解的全局敏感性分析方法对不确定性变量的敏感性进行了量化。建立了多项式混沌耦合伴随方程的统计矩梯度求解方法,并结合梯度增强型多项式混沌法搭建不确定性梯度优化设计系统。基于该优化设计系统对二维低亚声速和跨声速翼型开展确定性及不确定性优化设计研究。优化结果显示,相比于确定性优化设计,不确定性优化设计通过合理权衡确定性性能和不确定性性能,可提高抵抗马赫数和迎角不确定性扰动的能力,同时优化性能均值和标准差。其中阻力系数均值最大可降低17%,阻力系数标准差最大可降低80%。而确定性优化设计可能导致性能鲁棒性的降低。
中图分类号:
陈艺夫, 马宇航, 蓝庆生, 孙卫平, 史亚云, 杨体浩, 白俊强. 基于多项式混沌法的翼型不确定性分析及梯度优化设计[J]. 航空学报, 2023, 44(8): 127446.
Yifu CHEN, Yuhang MA, Qingsheng LAN, Weiping SUN, Yayun SHI, Tihao YANG, Junqiang BAI. Uncertainty analysis and gradient optimization design of airfoil based on polynomial chaos expansion method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127446.
表3
亚声速翼型:蒙特卡洛法和PCE法计算结果
| Method | CFD evaluations | ||||||
|---|---|---|---|---|---|---|---|
| MC | 5 000 | 0.196 4 | 0.009 151 | -3.138×10-4 | 0.025 96 | 5.642×10-5 | 1.117×10-4 |
| MC | 10 000 | 0.196 4 | 0.009 151 | -3.138×10-4 | 0.026 03 | 5.668×10-5 | 1.117×10-4 |
| PCE(p=1) | 4 | 0.196 3 | 0.009 148 | -3.061×10-4 | 0.026 28 | 5.438×10-5 | 1.172×10-4 |
| PCE(p=2) | 9 | 0.196 4 | 0.009 152 | -3.127×10-4 | 0.026 34 | 5.704×10-5 | 1.119×10-4 |
| PCE(p=3) | 16 | 0.196 4 | 0.009 152 | -3.061×10-4 | 0.026 32 | 6.409×10-5 | 1.256×10-4 |
| GPCE(p=1) | 4 | 0.196 3 | 0.009 147 | -3.146×10-4 | 0.026 31 | 5.720×10-5 | 1.085×10-4 |
| GPCE(p=2) | 9 | 0.196 4 | 0.009 151 | -3.142×10-4 | 0.026 31 | 5.669×10-5 | 1.127×10-4 |
| GPCE(p=3) | 16 | 0.196 4 | 0.009 151 | -3.141×10-4 | 0.025 94 | 5.720×10-5 | 1.118×10-4 |
表4
跨声速翼型:蒙特卡洛法和PCE法计算结果
| Method | CFD evaluations | ||||||
|---|---|---|---|---|---|---|---|
| MC | 5 000 | 0.823 7 | 0.023 11 | 0.106 9 | 0.047 81 | 0.007 812 | 0.009 361 |
| MC | 10 000 | 0.823 3 | 0.023 12 | 0.106 9 | 0.047 77 | 0.007 860 | 0.009 247 |
| PCE(p=1) | 4 | 0.846 1 | 0.022 48 | 0.107 9 | 0.042 38 | 0.009 672 | 0.013 290 |
| PCE(p=2) | 9 | 0.815 3 | 0.022 58 | 0.105 1 | 0.062 18 | 0.009 673 | 0.013 620 |
| PCE(p=3) | 16 | 0.821 6 | 0.023 24 | 0.106 9 | 0.074 70 | 0.006 973 | 0.009 014 |
| PCE(p=4) | 25 | 0.821 9 | 0.023 14 | 0.106 8 | 0.051 86 | 0.007 205 | 0.008 989 |
| GPCE(p=1) | 4 | 0.844 4 | 0.022 58 | 0.107 9 | 0.041 37 | 0.009 283 | 0.011 230 |
| GPCE(p=2) | 9 | 0.817 3 | 0.023 35 | 0.106 7 | 0.060 30 | 0.009 216 | 0.011 810 |
| GPCE(p=3) | 16 | 0.816 5 | 0.022 97 | 0.106 9 | 0.062 20 | 0.007 078 | 0.009 289 |
| GPCE(p=4) | 25 | 0.827 7 | 0.023 12 | 0.107 2 | 0.047 89 | 0.007 809 | 0.009 438 |
| 1 | GIESING J, BARTHELEMY J F. A summary of industry MDO applications and needs[C]∥7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 1998. |
| 2 | ZANG T A, HEMSCH M J, HILBURGER M W,et al. Needs and opportunities for uncertaintybased multidisciplinary design methods for aerospace vehicles[R]. Washington, D. C.:NASA Langley Research Center, 2002. |
| 3 | HUYSE L, LEWIS R M. Aerodynamic shape optimization of two-dimensional airfoils under uncertain conditions[M]. Washington, D.C.: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center 2001. |
| 4 | WALTERS R W, HUYSE L. Uncertainty analysis for fluid mechanics with applications[R].Washington, D. C.:NASA Langley Research Center, 2002. |
| 5 | CHEN W, JIN R C, SUDJIANTO A. Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty[J]. Journal of Mechanical Design, 2005, 127(5): 875-886. |
| 6 | CAFLISCH R E. Monte Carlo and quasi-Monte Carlo methods[J]. Acta Numerica, 1998, 7: 1-49. |
| 7 | PELLETIER D, TURGEON E, LACASSE D, et al. Adaptivity, sensitivity, and uncertainty: Toward standards of good practice in computational fluid dynamics[J]. AIAA Journal, 2003, 41(10): 1925-1933. |
| 8 | LUCKRING J, HEMSCH M, MORRISON J. Uncertainty in computational aerodynamics[C]∥41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
| 9 | SCHAEFER J A, ROMERO V J, SCHAFER S R, et al. Approaches for quantifying uncertainties in computational modeling for aerospace applications[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
| 10 | ROELOFS M, VOS R. Technology evaluation and uncertaintybased design optimization: A review[C]∥ 2018 AIAA Aerospace Sciences Meeting. Reston:AIAA,2018. |
| 11 | KNIO O M, LE MAÎTRE O P. Uncertainty propagation in CFD using polynomial chaos decomposition[J]. Fluid Dynamics Research, 2006, 38(9): 616-640. |
| 12 | NAJM H N. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 2009, 41: 35-52. |
| 13 | LOEVEN G A, WITTEVEEN J S, BIJL H. Probabilistic collocation: an efficient non-intrusive approach for arbitrarily distributed parametric uncertainties[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
| 14 | SIMON F, GUILLEN P, SAGAUT P, et al. A gPC-based approach to uncertain transonic aerodynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(17-20): 1091-1099. |
| 15 | CHASSAING J C, LUCOR D. Stochastic investigation of flows about airfoils at transonic speeds[J]. AIAA Journal, 2010, 48(5): 938-950. |
| 16 | YAMAZAKI W. Stochastic drag analysis via polynomial chaos uncertainty quantification[C]∥51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. |
| 17 | SUGA Y, YAMAZAKI W. Aerodynamic uncertainty quantification of supersonic biplane airfoil via polynomial chaos approach[C]∥17th AIAA Non-Deterministic Approaches Conference. Reston: AIAA, 2015. |
| 18 | HOSDER S, WALTERS R W, BALCH M. Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics[J]. AIAA Journal, 2010, 48(12): 2721-2730. |
| 19 | WEST T K, PHILLIPS B D. Multifidelity uncertainty quantification of a commercial supersonic transport[J]. Journal of Aircraft, 2020, 57(3): 491-500. |
| 20 | GHISU T, PARKS G T, JARRETT J P, et al. Adaptive polynomial chaos for gas turbine compression systems performance analysis[J]. AIAA Journal, 2010, 48(6): 1156-1170. |
| 21 | ABRAHAM S, TSIRIKOGLOU P, LACOR C, et al. Uncertainty quantification in industrial turbo-machinery design using sparse polynomial chaos expansions[C]∥ 2018 Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2018. |
| 22 | LI Z H, LIU Y M, AGARWAL R K. Uncertainty quantification of geometric and flow variables affecting the performance of a transonic axial compressor[C]∥2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018. |
| 23 | LIU Z Y, WANG X D, KANG S. Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations[J]. Energy, 2014, 73: 126-136. |
| 24 | DI STEFANO M A, HOSDER S, BAURLE R A. Effect of turbulence model uncertainty on scramjet strut injector flow field analysis[J]. Computers & Fluids, 2021, 229: 105104. |
| 25 | GUO Z T, CHU W L. Stochastic aerodynamic analysis for compressor blades with manufacturing variability based on a mathematical dimensionality reduction method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(10): 5719-5735. |
| 26 | HUANG M, LI Z G, LI J, et al. Uncertainty quantification and sensitivity analysis of aerothermal performance for the turbine blade squealer tip[J]. International Journal of Thermal Sciences, 2022, 175: 107460. |
| 27 | 王晓东, 康顺. 多项式混沌法求解随机Burgers方程[J]. 工程热物理学报, 2010, 31(3): 393-398. |
| WANG X D, KANG S. Solving stochastic Burgers equation using polynomial chaos decomposition[J]. Journal of Engineering Thermophysics, 2010, 31(3): 393-398 (in Chinese). | |
| 28 | 王晓东, 康顺. 多项式混沌方法在随机方腔流动模拟中的应用[J]. 中国科学,2011,41(6):790-798. |
| WANG X D, KANG S. Application of polynomial chaos on numerical simulation of stochastic cavity flow[J].Sci China Tech Sci, 2011, 41(6):790-798 (in Chinese). | |
| 29 | 邬晓敬, 张伟伟, 宋述芳, 等. 翼型跨声速气动特性的不确定性及全局灵敏度分析[J]. 力学学报, 2015, 47(4): 587-595. |
| WU X J, ZHANG W W, SONG S F, et al. Uncertainty quantification and global sensitivity analysis of transonic aerodynamics about airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 587-595 (in Chinese). | |
| 30 | ZHAO H, GAO Z H, XU F, et al. Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data[J]. Structural and Multidisciplinary Optimization, 2021, 64(2): 829-858. |
| 31 | SCHAEFER J A, CARY A W, MANI M, et al. Uncertainty quantification across design space using spatially accurate polynomial chaos[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
| 32 | ZEIN S. A polynomial chaos expansion trust region method for robust optimization[J]. Communications in Computational Physics, 2013, 14(2): 412-424. |
| 33 | WANG X D, HIRSCH C, LIU Z Y, et al. Uncertainty-based robust aerodynamic optimization of rotor blades[J]. International Journal for Numerical Methods in Engineering, 2013, 94(2): 111-127. |
| 34 | PALAR P S, TSUCHIYA T, PARKS G. Decomposition-based evolutionary aerodynamic robust optimization with multi-fidelity point collocation non-intrusive polynomial chaos[C]∥17th AIAA Non-Deterministic Approaches Conference. Reston: AIAA, 2015. |
| 35 | 邬晓敬. 气动外形优化设计中的不确定性及高维问题研究[D]. 西安: 西北工业大学, 2018. |
| WU X J. Research on uncertainty and high-dimensional problems in aerodynamic shape optimization design[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
| 36 | PADULO M, CAMPOBASSO M S, GUENOV M D. Novel uncertainty propagation method for robust aerodynamic design[J]. AIAA Journal, 2011, 49(3): 530-543. |
| 37 | SHANKARAN S, JAMESON A. Robust optimal control using polynomial chaos and adjoints for systems with uncertain inputs[C]∥20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011. |
| 38 | SCHILLINGS C, SCHULZ V. On the influence of robustness measures on shape optimization with stochastic uncertainties[J]. Optimization and Engineering, 2015, 16(2): 347-386. |
| 39 | RALLABHANDI S K, WEST T K, NIELSEN E J. Uncertainty analysis and robust design of low-boom concepts using atmospheric adjoints[J]. Journal of Aircraft, 2017, 54(3): 902-917. |
| 40 | BOOPATHY K, KENNEDY G. Semi-intrusive uncertainty propagation and adjoint sensitivity analysis using the stochastic Galerkin method[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
| 41 | SABATER C, GÖRTZ S. Gradient-based aerodynamic robust optimization using the adjoint method and Gaussian processes[M]∥Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences. Cham: Springer, 2021: 211-226. |
| 42 | MAYEUR J, DUMONT A, DESTARAC D, et al. Reynolds-averaged navier-stokes simulations on NACA0012 and ONERA-M6 wing with the ONERA elsA solver[J]. AIAA Journal, 2016, 54(9): 2671-2687. |
| 43 | FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4): 609-615. |
| 44 | SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2008, 93(7): 964-979. |
| 45 | 赵轲. 基于CFD的复杂气动优化与稳健设计方法研究[D]. 西安: 西北工业大学, 2015. |
| ZHAO K. Complex aerodynamic optimization and robust design method based on computational fluid dynamics[D]. Xi’an: Northwestern Polytechnical University, 2015 (in Chinese). |
| [1] | 孟宪超, 陶俊. 基于目标检验条件生成对抗网络的翼型反设计方法[J]. 航空学报, 2025, 46(10): 631182-631182. |
| [2] | 王景, 柳位, 谢海润, 张淼, 马涂亮. 扩散模型驱动的超临界翼型多目标生成式设计[J]. 航空学报, 2025, 46(10): 631210-631210. |
| [3] | 张睿韬, 王聪, 陶俊, 王立悦, 孙刚. 基于潜在扩散模型的翼型参数化方法[J]. 航空学报, 2025, 46(10): 631180-631180. |
| [4] | 郭翔鹰, 许杰, 黄永畅. 较大尺度波长结节翼在临界角附近的特性分析[J]. 航空学报, 2024, 45(S1): 730557-730557. |
| [5] | 李广宁, 雷坤鹏, 安效民, 徐敏, 许勇. 跨声速穿越的翼型变马赫数效应虚拟飞行仿真[J]. 航空学报, 2024, 45(S1): 730875-730875. |
| [6] | 柳家齐, 陈荣钱, 楼锦华, 韩旭, 吴昊, 尤延铖. 基于深度学习的高速直升机旋翼翼型气动优化设计[J]. 航空学报, 2024, 45(9): 529828-529828. |
| [7] | 王雪鹤, 柴春硕, 邢世龙, 樊枫, 黄水林. 共轴高速直升机反流区翼型设计及减阻机理[J]. 航空学报, 2024, 45(9): 529960-529960. |
| [8] | 周琳, 黄江涛, 钟世东, 刘刚, 邓俊, 高正红. 考虑吸波材料的雷达散射截面伴随优化方法[J]. 航空学报, 2024, 45(24): 130347-130347. |
| [9] | 余荣科, 赵鲲, 冯和英, 章荣平, 李屹萌. 基于脉压波数-频率谱的水、空气通用翼型尾缘散射噪声快速预测方法[J]. 航空学报, 2024, 45(23): 630295-630295. |
| [10] | 但玥, 高丽敏, 余华蔚, 李瑞宇, 罗秋生, 郝玉扬. 考虑偏峰统计特征的压气机叶栅前缘半径加工误差不确定性量化[J]. 航空学报, 2024, 45(19): 630366-630366. |
| [11] | 李思桐, 夏露, 周琳, 赵轲. 考虑涂敷的翼型气动高频电磁隐身一体化设计[J]. 航空学报, 2024, 45(17): 529874-529874. |
| [12] | 余婧, 蒋安林, 刘亮, 吴晓军, 桂业伟, 刘深深. 基于PCA降维的气动外形参数化方法[J]. 航空学报, 2024, 45(10): 129125-129125. |
| [13] | 农历, 盛子帅, 冼军, 张怀宝. 基于高精度算法的结冰翼型分离流动数值模拟[J]. 航空学报, 2023, 44(S2): 729291-729291. |
| [14] | 许岭松, 吴渊, 朱东宇, 张付昆, 刘昱. FL⁃61结冰风洞翼型俯仰振荡机构研制[J]. 航空学报, 2023, 44(S2): 729296-729296. |
| [15] | 马高杰, 安刚, 史佑民, 康宁, 孙军帅. 民用飞机高升力系统先进技术及发展[J]. 航空学报, 2023, 44(S1): 727516-727516. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

