1 |
BANIK S D, KUMAR S, SINGH P K, et al. Distortion and residual stresses in thick plate weld joint of austenitic stainless steel: Experiments and analysis[J]. Journal of Materials Processing Technology, 2021, 289: 116944.
|
2 |
王秋成, 柯映林, 章巧芳. 7075铝合金板材残余应力深度梯度的评估[J]. 航空学报, 2003, 24(4): 336-338.
|
|
WANG Q C, KE Y L, ZHANG Q F. Evaluation of residual stress depth profiling in 7075 aluminum alloy plates[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(4): 336-338 (in Chinese).
|
3 |
JIA L, GUI Y T, BIN G, et al. Micro-macro characteristics between domain wall motion and magnetic Barkhausen noise under tensile stress[J]. Journal of Magnetism and Magnetic Materials: C, 2020, 493: 165719.
|
4 |
张志东. 磁性材料的磁结构、磁畴结构和拓扑磁结构[J]. 物理学报, 2015, 64(6): 5-21.
|
|
ZHANG Z D. Magnetic structures, magnetic domains and topological magnetic textures of magnetic materials[J]. Journal of Physics, 2015, 64(6): 5-21 (in Chinese).
|
5 |
DI J Y, HE C F, LEE Y C, et al. Evaluation of the stress gradient of the superficial layer in ferromagnetic components based on sub-band energy of magnetic Barkhausen noise[J]. Nondestructive Testing and Evaluation, 2022, 37(1): 41-55.
|
6 |
苟磊, 马玉娥, 杜永, 等. 7050凹槽铝板激光冲击强化残余应力分布与疲劳寿命[J]. 航空学报, 2019, 40(12): 423096.
|
|
GOU L, MA Y E, DU Y, et al. Residual stress profile and fatigue life of 7050 aluminum plate with groove under laser shot peening[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 423096 (in Chinese).
|
7 |
BAHLEDA F, DREVENÝ I, PITOŇÁK M, et al. Employment of barkhausen noise technique for assessment of prestressing bars damage with respect of their over-stressing[J]. Metals, 2021, 11(5): 770.
|
8 |
朱秋君. 巴克豪森噪声钢轨应力检测仪的开发和研究[D]. 南京: 南京航空航天大学, 2012: 11-15.
|
|
ZHU Q J. Development and research of the equipment of barkhausen noise rail stress detection[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 11-15 (in Chinese).
|
9 |
FAGAN P, DUCHARNE B, DANIEL L, et al. Effect of stress on the magnetic Barkhausen noise energy cycles: A route for stress evaluation in ferromagnetic materials[J]. Materials Science and Engineering: B, 2022, 278: 115650.
|
10 |
杨吟飞, 张峥, 李亮, 等. 7085铝合金残余应力及加工变形的数值仿真与试验[J]. 航空学报, 2014, 35(2): 574-581.
|
|
YANG Y F, ZHANG Z, LI L, et al. Numerical simulation and test of bulk residual stress and machining distortion in aluminum alloy 7085[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 574-581 (in Chinese).
|
11 |
GUBBELS W. Magnetic Barkhausen noise analysis for inspection of ferromagnetic materials[J]. Materials Evaluation, 2020, 78(6): 618-624.
|
12 |
PEREZ-MONTES F, ORTEGA-LABRA O, MANH T L, et al. Enhancing the precision of magnetocrystalline anisotropy energy estimation from Barkhausen noise using a deep neural network[J]. Materials Today Communications, 2020, 24: 101145.
|
13 |
朱秋君, 王平, 田贵云, 等. 基于BP神经网络的巴克豪森铁轨温度应力检测[J]. 无损检测, 2011, 33(12): 25-28.
|
|
ZHU Q J, WANG P, TIAN G Y, et al. A rail temperature stress detection system by Barkhausen noise based on BP neural network[J]. Nondestructive Testing Technologying, 2011, 33(12): 25-28 (in Chinese).
|
14 |
蒋政培, 凌张伟, 王敏. 磁巴克豪森噪声技术在应力评估中的研究进展[J]. 无损检测, 2018, 40(8): 67-74.
|
|
JIANG Z P, LING Z W, WANG M. Progress of magnetic Barkhausen noise technique in stress evaluation[J]. Non-destructive testing, 2018, 40(8): 67-74 (in Chinese).
|
15 |
高涵, 白照广, 范东栋. 基于BP神经网络的GNSS-R海面风速反演[J]. 航空学报, 2019, 40(12): 323261.
|
|
GAO H, BAI Z G, FAN D D. GNSS-R sea surface wind speed inversion based on BP neural network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 323261 (in Chinese).
|
16 |
ZHANG N B, LI Y W, YANG X B, et al. Bearing fault diagnosis based on BP neural network and transfer learning[J]. Journal of Physics: Conference Series, 2021, 1881(2): 3-6.
|
17 |
张翔, 高晓蓉, 郭建强, 等. 基于能量重构的MBN材料硬度检测算法研究[J]. 传感器与微系统, 2020, 39(3): 30-33, 41.
|
|
ZHANG X, GAO X R, GUO J Q, et al. Research on algorithms for material hardness detection based on energy reconstruction MBN[J]. Transducer and Microsystem Technologies, 2020, 39(3): 30-33, 41 (in Chinese).
|
18 |
姬小丽, 王平, 田贵云, 等. 基于小波分解和BP神经网络的磁巴克豪森噪声信号分层分析研究[J]. 无损检测, 2012, 34(11): 5-9.
|
|
JI X L, WANG P, TIAN G Y, et al. Stratified analysis of the magnetic barkhausen noise signal based on wavelet decomposition and back propagation neural network[J]. Nondestructive Testing Technologying, 2012, 34(11): 5-9 (in Chinese).
|
19 |
COIFMAN R R, MEYER Y, QUAKE S, et al. Signal processing and compression with wavelet packets[M]∥Wavelets and Their Applications. Dordrecht: Springer Netherlands, 1994: 363-379.
|
20 |
吴杰. 巴克豪森应力检测的提离消除及软硬件实现研究[D]. 南京: 南京航空航天大学, 2015: 11-36.
|
|
WU J. Research on eliminating the lift-off and realization of system of barkhausen stress testing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 11-36 (in Chinese).
|
21 |
张传栋, 何存富, 刘秀成, 等. 基于BP神经网络的钢轴表面硬度磁巴克豪森噪声定量检测技术[J]. 实验力学, 2020, 35(1): 1-8.
|
|
ZHANG C D, HE C F, LIU X C, et al. Magnetic Barkhausen noise technology for surface hardness evaluation in steel shaft based on BP neural network[J]. Journal of Experimental Mechanics, 2020, 35(1): 1-8 (in Chinese).
|
22 |
雷瑛, 李达, 罗森怡. 磨削加工件表面残余应力测试及其线性回归预测分析[J]. 工具技术, 2021, 55(10): 19-23.
|
|
LEI Y, LI D, LUO S Y. Surface residual stress measurement and linear regression prediction analysis of grinding workpiece[J]. Tool Engineering, 2021, 55(10): 19-23 (in Chinese).
|
23 |
PANDIT P, DEY P, KRISHNAMURTHY K N. Comparative assessment of multiple linear regression and fuzzy linear regression models[J]. SN Computer Science, 2021, 2(2): 76.
|
24 |
董雷. 基于BP神经网络的电磁融合无损检测方法研究[D]. 重庆: 重庆大学, 2018: 51-84.
|
|
DONG L. Research on nondestructive detection of electromagnetic fusion based on BP neural network[D]. Chongqing: Chongqing University, 2018: 51-84 (in Chinese).
|