收稿日期:
2023-02-01
修回日期:
2023-03-01
接受日期:
2023-06-02
出版日期:
2023-11-25
发布日期:
2023-06-21
通讯作者:
户东方
E-mail:hudf@foxmail.com
基金资助:
Weimin WANG1,2, Dongfang HU1()
Received:
2023-02-01
Revised:
2023-03-01
Accepted:
2023-06-02
Online:
2023-11-25
Published:
2023-06-21
Contact:
Dongfang HU
E-mail:hudf@foxmail.com
Supported by:
摘要:
叶片结构是航空发动机、燃气轮机的重要能量转换部件,叶片的疲劳断裂问题严重影响机组的运行安全,对其进行健康监测尤为重要。通过对叶片进行实时的动应力监测并构建载荷谱,可以预估叶片剩余寿命,预警叶片裂纹的萌生,最终实现叶片的健康管理。动应力非接触测量方法自提出以来,在提升航空发动机、燃气轮机等设备的安全运行能力方面展现出巨大的潜力。综述了动应力非接触测量方法的基本原理及近年来的主要研究成果,归纳总结了动应力反演中的关键方法与技术,包括叶尖振动位移的精确识别方法、应力幅值比确定方法、多模态动应力计算方法等,分析了动应力反演的误差来源以及2种常用的非接触测量动应力的误差标定工具方法,并对今后的关键研究方向进行了展望。
中图分类号:
王维民, 户东方. 旋转叶片动应力非接触测量方法研究综述[J]. 航空学报, 2023, 44(22): 28516-028516.
Weimin WANG, Dongfang HU. Review on non⁃contact dynamic stress measurement methods of rotating blades[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 28516-028516.
1 | NIEBERDING W C, POLLACK J L. Optical detection of blade flutter[C]∥ Proceedings of the ASME 1977 International Gas Turbine Conference and Products Show. Philadelphia: International Gas Turbine Institute, 1977: V001T01A064. |
2 | KURKOV A, DICUS J.Synthesis of blade flutter vibratory patterns using stationary transducers[J].Molecular Imaging, 1978, 11(1):67-76. |
3 | MCCARTY P E, THOMPSON J W. A noninterference technique for measurement of turbine engine compressor blade stress[J]. Journal of Aircraft, 1982, 19(1): 65-70. |
4 | MCCARTY P E, THOMPSON J W. Performance evaluation of a prototype noninterference technique for measurement of turbine engine com-pressor blade stress[C]∥ 16th Joint Propulsion Conference. Reston: AIAA; 1980: 1141. |
5 | RUSSHARD P. Development of a blade tip timing based engine health monitoring system[D]. Manchester: The University of Manchester, 2010:33-34. |
6 | 段发阶, 李刚, 叶德超, 等. 基于叶尖定时的叶片动应力反演方法[J]. 纳米技术与精密工程, 2016, 14(3): 161-166. |
DUAN F J, LI G, YE D C,et al. Method for inversing dynamic stress of blade based on tip-timing[J]. Nanotechnology and Precision Engineering, 2016, 14(3): 161-166 (in Chinese). | |
7 | WANG W M, HU D F, LI Q H, et al. An improved non-contact dynamic stress measurement method for turbomachinery rotating blades based on fundamental mistuning model[J]. Mechanical Systems and Signal Processing, 2020, 144: 106851. |
8 | 朱昱达, 乔百杰, 符顺国, 等. 基于响应传递比的转子叶片动应变重构[J]. 航空动力学报, 2021,36(8):1690-1701. |
ZHU Y D, QIAO B J, FU S G. Dynamic strain reconstruction of rotating blade based on response transmissibility[J]. Journal of Aerospace Power, 2021, 36(8):1690‐1701 (in Chinese). | |
9 | CHEN Z S, SHENG H, XIA Y M, et al. A comprehensive review on blade tip timing-based health monitoring: status and future[J]. Mechanical Systems and Signal Processing, 2021, 149: 107330. |
10 | BATTIATO G. Vibrations prediction and measurement of multi-stage bladed disks with non-linear behavior due to friction contacts[D]. Turin:Politecnico di Torino, 2017. |
11 | JOUSSELIN O. Development of blade tip timing techniques in turbo machinery[D]. Manchester: The University of Manchester, 2013:25-27. |
12 | KHARYTON V. Faults detection in blades of an aviation engine in operation[D]. Lyon :Ecole Centrale de Lyon, 2009: 2-3. |
13 | PICKERING T M. Methods for validation of a turbomachinery rotor blade tip timing system[D]. Blacksburg:Virginia Polytechnic Institute and State University, 2014: 6-8. |
14 | OSBURN N G. Implementation of a two probe tip-timing technique to determine compressor blade vibrations[D]. Stockholm: Royal Institute of Technology, 2000: 11-16. |
15 | MOHAMED M E E. Towards reliable and efficient calibration of blade tip timing measurements against finite element model predictions[D]. Manchester: The University of Manchester, 2019:28-35. |
16 | LEE G M. Prediction of strain responses from the measurements of displacement responses[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 1143-1152. |
17 | GEVINSKI J R, PEDERIVA R. Prediction of dynamic strain using modal parameters[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38(1): 49-57. |
18 | ZHANG X J, WANG Y R, JIANG X H, et al. Blade vibration stress determination method based on blade tip timing simulator and finite element method[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(3): 031001. |
19 | KNAPPETT D, GARCIA J. Blade tip timing and strain gauge correlation on compressor blades[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(4): 497-506. |
20 | IWATA T, BABA Y, SAEKI K, et al. Experimental evaluation of mechanical reliability of the impeller blade for large integrally geared compressors[C]∥ 46th Turbomachinery & 33rd Pump Symposia. Houston: Texas A&M Engineering Experiment Station, 2017: 520-529. |
21 | 李刚. 基于叶尖定时的叶片动应力非接触测量方法研究[D]. 天津: 天津大学, 2016: 25-41. |
LI G. Research for No-contact measurement method of blade dynamic stress based on tip-timing[D]. Tianjin: Tianjin University, 2016: 25-41 (in Chinese). | |
22 | AO C Y, QIAO B J, CHEN L, et al. Blade dynamic strain non-intrusive measurement using L1/2-norm regularization and transmissibility[J]. Measurement, 2022, 190: 110677. |
23 | RANTALAINEN T T, MIKKOLA A M, BJÖRK T J. Sub-modeling approach for obtaining structural stress histories during dynamic analysis[J]. Mechanical Sciences, 2013, 4(1): 21-31. |
24 | ROY R, GHERLONE M, SURACE C, et al. Full-field strain reconstruction using uniaxial strain measurements: application to damage detection[J]. Applied Sciences, 2021, 11(4): 1681. |
25 | WU R, ZHANG D S, YU Q F, et al. Health monitoring of wind turbine blades in operation using three-dimensional digital image correlation[J]. Mechanical Systems and Signal Processing, 2019, 130: 470-483. |
26 | 李馨, 赵加清, 张征明, 等. 基于数字图像相关的自适应应变场计算[J]. 光学学报, 2021, 41(23): 125-132. |
LI X, ZHAO J Q, ZHANG Z M, et al. Self-adaptive strain field calculation based on digital image correlation[J]. Acta Optica Sinica, 2021, 41(23): 125-132 (in Chinese). | |
27 | GWASHAVANHU B, OBERHOLSTER A J, HEYNS P S. Rotating blade vibration analysis using photogrammetry and tracking laser Doppler vibrometry[J]. Mechanical Systems and Signal Processing, 2016, 76-77: 174-186. |
28 | CASAVOLA C, PAPPALETTERA G. Strain field analysis in electronic components by ESPI: bad thermal contact and damage evaluation[J]. Journal of Nondestructive Evaluation, 2018, 37(1): 11. |
29 | YANG Y C, JUNG H K, DORN C, et al. Estimation of full-field dynamic strains from digital video measurements of output-only beam structures by video motion processing and modal superposition[J]. Structural Control and Health Monitoring, 2019, 26(10): e2408. |
30 | JANG H L, HAN D H, HWANG M Y, et al. Displacement, strain and failure estimation for multi-material structure using the displacement-strain transformation matrix[J]. Materials, 2020, 13(1): 190. |
31 | LAXALDE D, THOUVEREZ F. Complex non-linear modal analysis for mechanical systems: application to turbomachinery bladings with friction interfaces[J]. Journal of Sound and Vibration, 2009, 322(4-5): 1009-1025. |
32 | KRACK M. Nonlinear modal analysis of nonconservative systems: extension of the periodic motion concept[J]. Computers & Structures, 2015, 154: 59-71. |
33 | FERHATOGLU E, ZUCCA S. On the non-uniqueness of friction forces and the systematic computation of dynamic response boundaries for turbine bladed disks with contacts[J]. Mechanical Systems and Signal Processing, 2021, 160: 107917. |
34 | KHARYTON V, BLADH R. Using tiptiming and strain gauge data for the estimation of consumed life in a compressor blisk subjected to stall-induced loading[C]∥ Proceedings of ASME Turbo Expo 2014. Düsseldorf: ASME, 2014: 27251. |
35 | MOHAMED M, BONELLO P, RUSSHARD P. A novel method for the determination of the change in blade tip timing probe sensing position due to steady movements[J]. Mechanical Systems and Signal Processing, 2019, 126: 686-710. |
36 | MOHAMED M, BONELLO P, RUSSHARD P. Determination of simultaneous steady-state movements using blade tip timing data[J].Journal of Vibration and Acoustics: Transactions of the ASME,2020,142(1):011017. |
37 | ZHANG X L, WANG W M, CHEN K, et al. Five dimensional movement measurement method for rotating blade based on blade tip timing measuring point position tracking[J]. Mechanical Systems and Signal Processing, 2021, 161: 107898. |
38 | GUO H N, YANG Y M, GUAN F J, et al. A torsional vibration measurement method for rotating blades based on blade tip timing[J]. Shock and Vibration, 2021,2021:9950269. |
39 | ZHANG X J, WANG Y R, JIANG X H, et al. Parameter identification and sensor configuration in tip timing for asynchronous vibration of a deformed blade with finite element method simulated data verification[J]. Journal of Vibration and Acoustics, 2020, 142(2): 021010. |
40 | 徐芝纶. 弹性力学简明教程[M]. 4版. 北京: 高等教育出版, 2013: 16-18. |
XU Z L. Elastic mechanics concise course[M]. 4th ed. Beijing: Higher Education Press, 2013: 16-18 (in Chinese). | |
41 | KHAN R, KAMILI O M, NAGABHUSHANA S T, et al. Correlation between FEA and testing for HCF-safety assessment of an aero engine turbine rotor blade[C]∥ ASME Gas Turbine India Conference. Bangalore: ASME, 2013: 3697. |
42 | MOHAMED M E, BONELLO P, RUSSHARD P. Uncertainties in the calibration process of blade tip timing data against finite element model predictions[C]/∥ 12th International Conference on Vibrations in Rotating Machinery. London: Institute of Mechanical Engineers, 2020. |
43 | MOHAMED M E, BONELLO P, RUSSHARD P, et al. Experimental validation of FEM-computed stress to tip deflection ratios of aero-engine compressor blade vibration modes and quantification of associated uncertainties[J]. Mechanical Systems and Signal Processing, 2022, 178: 109257. |
44 | KASZYNSKI A A, BROWN J M. Accurate blade tip timing limits through geometry mistuning modeling[C]∥ Proceedings of ASME Turbo Expo 2015. Montréal: ASME, 2015:43192. |
45 | GUO H N, YANG Y M, GUAN F J, et al. A blade dynamic strain inversion method for rotating blades based on blade tip timing[J]. Journal of Physics: Conference Series, 2021, 2029(1): 012073. |
46 | DIMITRIADIS G, CARRINGTON I B, WRIGHT J R, et al. Blade-tip timing measurement of synchronous vibrations of rotating bladed assemblies[J]. Mechanical Systems and Signal Processing, 2002, 16(4): 599-622. |
47 | LI J, AYE-ADDO N, KIELB R, et al. Mistuned higher-order mode forced response of an embedded compressor rotor:Part II—mistuned forced response prediction[J]. Journal of Turbomachinery, 2018, 140(3): 031006. |
48 | BORNASSI S, FIRRONE C M, BERRUTI T M. Vibration parameters estimation by blade tip-timing in mistuned bladed disks in presence of close resonances[J]. Applied Sciences, 2020, 10(17): 5930. |
49 | 李琳, 郭雅妮. 发动机静子尾流激励对叶盘结构高阶共振可激性的研究[J]. 航空动力学报, 2017, 32(4): 780-790. |
LI L, GUO Y N. Research on excitability of the wake of stator in aero-engine to high order resonance of bladed-disk[J]. Journal of Aerospace Power, 2017, 32(4): 780-790 (in Chinese). | |
50 | 王建军, 卿立伟, 李其汉. 旋转叶片频率转向与振型转换特性[J]. 航空动力学报, 2007, 22(1): 8-11. |
WANG J J, QING L W, LI Q H. Frequency veering and mode shape interaction for rotating blades[J]. Journal of Aerospace Power, 2007, 22(1): 8-11 (in Chinese). | |
51 | KELLEY N, OSGOOD R, BIALASIEWICZ J, et al. Using time-frequency and wavelet analysis to assess turbulence/rotor interactions[C]∥ 2000 ASME Wind Energy Symposium. Reston: AIAA, 2000: 36. |
52 | 刘海, 娄金伟, 胡伟, 等. 基于叶尖定时原理的整体叶盘振动测试与分析[J]. 航空发动机, 2021, 47(6): 74-79. |
LIU H, LOU J W, HU W, et al. Vibration test and analysis of blisk based on tip-timing theory[J]. Aeroengine, 2021, 47(6): 74-79 (in Chinese). | |
53 | GROSS J, KRACK M. Multi-wave vibration caused by flutter instability and nonlinear tip-shroud friction[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(2): 021013. |
54 | DAY I J. Stall, surge, and 75 years of research[J]. Journal of Turbomachinery, 2016, 138(1): 011001. |
55 | KAMARAJ A, YADAV V, VENKATARAMAN S. Estimating uncertainty bounds for blade vibratory stresses under multi-mode excitation[C]∥ 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016: 1887. |
56 | NI K, WANG X Q, MIGNOLET M. Blade stress estimation during multiple vibratory modes[C]∥ 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013: 1772. |
57 | SALHI B, LARDIES J, BERTHILLIER M. Identification of modal parameters and aeroelastic coefficients in bladed disk assemblies[J]. Mechanical Systems and Signal Processing, 2009, 23(6): 1894-1908. |
58 | CHEN Z S, YANG Y M, GUO B, et al. Blade damage prognosis based on kernel principal component analysis and grey model using subsampled tip-timing signals[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(17): 3178-3185. |
59 | CHEN Z S, YANG Y M, XIE Y, et al. Non-contact crack detection of high-speed blades based on principal component analysis and Euclidian angles using optical-fiber sensors[J]. Sensors and Actuators A: Physical, 2013, 201: 66-72. |
60 | CHEN Z S, HE J, ZHAN C. Undersampled blade tip-timing vibration reconstruction under rotating speed fluctuation: uniform and nonuniform sensor configurations[J]. Shock and Vibration, 2019, 2019: 8103216. |
61 | CHEN Z S, LIU J H, ZHAN C, et al. Reconstructed order analysis-based vibration monitoring under variable rotation speed by using multiple blade tip-timing sensors[J]. Sensors, 2018, 18(10): 3235. |
62 | WANG P, KARG D, FAN Z Y, et al. Non-contact identification of rotating blade vibration[J]. Mechanical Engineering Journal, 2015, 2(3): 15-25. |
63 | HU Z, LIN J, CHEN Z S, et al. A non-uniformly under-sampled blade tip-timing signal reconstruction method for blade vibration monitoring[J]. Sensors, 2015, 15(2): 2419-2437. |
64 | XU J H, QIAO B J, YANG Z B, et al. Optimal placement of blade tip timing sensors considering multi-mode vibration using evolutionary algorithms[C]∥ 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD). Piscataway: IEEE Press, 2020: 367-372. |
65 | CHEN S Y, YANG Y M, HU H F, et al. Blind interpolation for multi-frequency blade tip timing signals[J]. Mechanical Systems and Signal Processing, 2022, 172: 108946. |
66 | AO C Y, QIAO B J, LIU M R, et al. Non-contact full-field dynamic strain reconstruction of rotating blades under multi-mode vibration[J]. Mechanical Systems and Signal Processing, 2023, 186: 109840. |
67 | LIN J, HU Z, CHEN Z S, et al. Sparse reconstruction of blade tip-timing signals for multi-mode blade vibration monitoring[J]. Mechanical Systems and Signal Processing, 2016, 81: 250-258. |
68 | PAN M H, YANG Y M, GUAN F J, et al. Sparse representation based frequency detection and uncertainty reduction in blade tip timing measurement for multi-mode blade vibration monitoring[J]. Sensors, 2017, 17(8): 1745. |
69 | BOUCHAIN A, PICHERAL J, LAHALLE E, et al. Blade vibration study by spectral analysis of tip-timing signals with OMP algorithm[J]. Mechanical Systems and Signal Processing, 2019, 130: 108-121. |
70 | XU J H, QIAO B J, LIU J J, et al. Sparse reconstruction for blade tip timing signal using generalized minimax-concave penalty[J]. Mechanical Systems and Signal Processing, 2021, 161: 107961. |
71 | CHEN Z S, SHENG H, XIA Y M. Multi-coset angular sampling-based compressed sensing of blade tip-timing vibration signals under variable speeds[J]. Chinese Journal of Aeronautics, 2021, 34(9): 83-93. |
72 | BIAN Z F, HU H F, YANG Y M, et al. A spectrum reconstruction method for blade vibration measurement based on probe waveform analysis[J]. Measurement, 2022, 199: 111425. |
73 | 户东方. 涡轮叶片动应力场重构关键技术研究[D]. 北京: 北京化工大学, 2020: 52-67. |
HU D F. Research on key technology of dynamic stress field reconstruction for turbine blade[D]. Beijing: Beijing University of Chemical Technology, 2020: 52-67 (in Chinese). | |
74 | BATTIATO G, FIRRONE C M, BERRUTI T M. Forced response of rotating bladed disks: Blade Tip-Timing measurements[J]. Mechanical Systems and Signal Processing, 2017, 85: 912-926. |
75 | RUSSHARD P. Blade tip timing (BTT) uncertainties[C]∥ Proceedings of the 12th International Aivela Conference on Vibration Measurements by Laser & Noncontact Techniques: Advances & Applications. Ancona: AIP Publishing LLC, 2016:020003. |
76 | PROCHÁZKA P. Methods and measuring systems for calibration of non-contact vibrodiagnostics systems[C]∥ 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Piscataway: IEEE Press, 2017: 1-6. |
77 | DIAMOND D H, HEYNS P S, OBERHOLSTER A J. Improved Blade Tip Timing measurements during transient conditions using a State Space Model[J]. Mechanical Systems and Signal Processing, 2019, 122: 555-579. |
78 | FAN Z F, LI H K, DONG J N, et al. An improved multiple per revolution-based blade tip timing method and its applications on large-scale compressor blades[J]. Mechanical Systems and Signal Processing, 2022, 167: 108538. |
79 | REN S Q, XIANG X R, ZHAO W, et al. An error correction blade tip-timing method to improve the measured accuracy of blade vibration displacement during unstable rotation speed[J]. Mechanical Systems and Signal Processing, 2022, 162: 108030. |
80 | WANG W M, CHEN K, ZHANG X L, et al. A novel method to improve the precision of BTT under rapid speed fluctuation conditions[J]. Mechanical Systems and Signal Processing, 2022, 177: 109203. |
81 | HOCKADAY B D. Quantifying optical tip-timing probe error with laboratory apparatus[C]∥ Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition. Vancouver:ASME,2011: 437-444. |
82 | DIAMOND D H, HEYNS P S, OBERHOLSTER A J. Constant speed tip deflection determination using the instantaneous phase of blade tip timing data[J]. Mechanical Systems and Signal Processing, 2021, 150(7):107151. |
83 | JAMIA N, FRISWELL M I, EL-BORGI S, et al. Modelling and experimental validation of active and passive eddy current sensors for blade tip timing[J]. Sensors and Actuators A: Physical, 2019, 285: 98-110. |
84 | FRISWELL M I, MOTTERSHEAD J E. Finite element model updating in structural dynamics[M]. Dordrecht: Kluwer Academic Publishers, 1995. |
85 | HU D F, WANG W M, ZHANG X L, et al. On-line real-time mistuning identification and model calibration method for rotating blisks based on blade tip timing (BTT)[J]. Mechanical Systems and Signal Processing, 2021, 147: 107074. |
86 | KASZYNSKI A A, BECK J A, BROWN J M. Uncertainties of an automated optical 3D geometry measurement, modeling, and analysis process for mistuned integrally bladed rotor reverse engineering[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(10): 102504. |
87 | GILLAUGH D, JANCZEWSKI T, KASZYNSKI A, et al. Forced response variation of a compressor utilizing blade tip timing, strain gages, and as-manufactured finite element models[J]. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2020, 143(11): 111023. |
88 | 刘豪. 与航空发动机涡轮叶片一体化集成的薄膜应变计研究[D]. 成都: 电子科技大学, 2019: 17-21. |
LIU H. Research on thin film strain gauge integrated with aeroengine turbine blade[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 17-21 (in Chinese). | |
89 | ARPIN-PONT J, GAGNON M, TAHAN S A, et al. Strain gauge measurement uncertainties on hydraulic turbine runner blade[J]. IOP Conference Series: Earth and Environmental Science, 2012, 15(6): 062042. |
90 | TEUFEL P, POLAND J. Robust and optimal strain gauge positions for blade vibration testing[C]∥ 2015 SIMULIA Community Conference. Berlin: SIMULIA Community, 2015. |
91 | KLAUKE T, KU¨HHORN A, BEIROW B, et al. Blade vibration phenomena of HPC bliscs considering manufacturing effects and strain gauge application[C]∥Proceedings of ASME Turbo Expo : Power for Land, Sea, and Air. Berlin: ASME, 2008: 403-413. |
92 | ZHAO X W, LI H K, YANG S H, et al. Blade vibration measurement and numerical analysis of a mistuned industrial impeller in a single-stage centrifugal compressor[J]. Journal of Sound and Vibration, 2021, 501: 116068. |
93 | WEI D T, LI H K, CHEN Y G, et al. Development of blade tip timing signal simulator based on a novel model reduction method of bladed disks[J]. Journal of Sound and Vibration, 2022, 534: 117053. |
94 | MOHAMED M E, BONELLO P, RUSSHARD P. An experimentally validated modal model simulator for the assessment of different Blade Tip Timing algorithms[J]. Mechanical Systems and Signal Processing, 2020, 136: 106484. |
95 | FIGASCHEWSKY F, HANSCHKE B, KÜHHORN A. Efficient generation of engine representative tip timing data based on a reduced order model for bladed rotors[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(1): 012503. |
96 | CHIACHÍO M, MEGÍA M, CHIACHÍO J, et al. Structural digital twin framework: formulation and technology integration[J]. Automation in Construction, 2022, 140: 104333. |
97 | 陶飞, 张辰源, 张贺, 等. 未来装备探索:数字孪生装备[J]. 计算机集成制造系统, 2022, 28(1): 1-16. |
TAO F, ZHANG C Y, ZHANG H, et al. Future equipment exploration: digital twin equipment[J]. Computer Integrated Manufacturing Systems, 2022, 28(1): 1-16 (in Chinese). | |
98 | 李杰林, 刘晋飞, 鞠传海, 等. 可靠性数字孪生概念内涵和技术框架研究[J]. 测控技术, 2021, 40(2): 18-24. |
LI J L, LIU J F, JU C H, et al. Research on conceptual connotation and technical framework of reliability-digital twin[J]. Measurement & Control Technology, 2021, 40(2): 18-24 (in Chinese). | |
99 | 沈如松, 徐焕翔, 矫永康, 等. 数字孪生及其在飞行器领域应用[J]. 指挥与控制学报, 2021, 7(3): 241-248. |
SHEN R S, XU H X, JIAO Y K, et al. Digital twin and its application in aircraft field[J]. Journal of Command and Control, 2021, 7(3): 241-248 (in Chinese). | |
100 | BECK J A, BROWN J M, GILLAUGH D L, et al. Integrally bladed rotor mistuning identification and model updating using geometric mistuning models[J]. Journal of Engineering for Gas Turbines and Power, 2021, 143(12): 121012. |
101 | MAYWALD T, BACKHAUS T, SCHRAPE S, et al. Geometric model update of blisks and its experimental validation for a wide frequency[C]∥ ASME Turbo Expo : Turbomachinery Technical Conference and Exposition, 2017: 63446. |
[1] | 田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 429134-429134. |
[2] | 黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024, 45(5): 529693-529693. |
[3] | 马崇立, 刘景源. 网格对高超声速钝头体表面热流数值模拟结果的影响[J]. 航空学报, 2023, 44(5): 126710-126710. |
[4] | 张旭龙, 王维民, 李天晴, 林昱隆, 艾信息, 王振国. 变转速工况下叶尖计时信号趋势项解析及验证[J]. 航空学报, 2023, 44(5): 426980-426980. |
[5] | 何佳琦, 吴伟达, 罗阳军. 基于P-CS模型与数字孪生的星载天线反射器形面鲁棒性控制方法[J]. 航空学报, 2023, 44(19): 328343-328343. |
[6] | 郭丞皓, 于劲松, 宋悦, 尹琦, 李佳璇. 基于数字孪生的飞机起落架健康管理技术[J]. 航空学报, 2023, 44(11): 227629-227629. |
[7] | 王芳丽, 刘凯, 潘微, 童明波. 民机结构绿色维修技术应用与发展[J]. 航空学报, 2023, 44(11): 25851-025851. |
[8] | 曹明, 王鹏, 左洪福, 曾海军, 孙见忠, 杨卫东, 魏芳, 陈雪峰. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ: 地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报, 2022, 43(9): 625574-625574. |
[9] | 廖文和, 田威, 李波, 李鹏程, 张苇, 李宇飞. 机器人精度补偿技术与应用进展[J]. 航空学报, 2022, 43(5): 627142-627142. |
[10] | 岳彩旭, 张俊涛, 刘献礼, 陈志涛, Steven Y. LIANG, Lihui WANG. 薄壁件铣削过程加工变形研究进展[J]. 航空学报, 2022, 43(4): 525164-525164. |
[11] | 林闯, 郑昱, 广晨汉, 王炎, 杨洋. 带翼展飞行器质量质心测量系统设计与误差分析[J]. 航空学报, 2022, 43(1): 224893-224893. |
[12] | 董雷霆, 周轩, 赵福斌, 贺双新, 卢志远, 冯建民. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 23981-023981. |
[13] | 孟松鹤, 叶雨玫, 杨强, 黄震, 解维华. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9): 23615-023615. |
[14] | 隋少春, 许艾明, 黎小华, 刘顺涛, 黄伟. 面向航空智能制造的DT与AI融合应用[J]. 航空学报, 2020, 41(7): 624173-624173. |
[15] | 古丽加依娜·哈再孜汗, 项斌斌, 王娜, 艾力·玉苏甫, 陈卯蒸, 李宁, 薛飞. 26 m射电望远镜副面调整机构误差分析[J]. 航空学报, 2020, 41(4): 423271-423271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学