航空学报 > 2022, Vol. 43 Issue (11): 526008-526008   doi: 10.7527/S1000-6893.2021.26008

带边条翼的翼身组合体摇滚运动试验

李乾, 王延奎, 贾玉红   

  1. 北京航空航天大学 航空科学与工程学院, 北京 100191
  • 收稿日期:2021-06-23 修回日期:2021-07-16 出版日期:2022-11-15 发布日期:2021-08-03
  • 通讯作者: 李乾,E-mail:liqian_buaa@126.com E-mail:liqian_buaa@126.com
  • 基金资助:
    国家自然科学基金(11972060,11721202)

Roll oscillations over wing-body configuration with strake wings: Experiment

LI Qian, WANG Yankui, JIA Yuhong   

  1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
  • Received:2021-06-23 Revised:2021-07-16 Online:2022-11-15 Published:2021-08-03
  • Supported by:
    National Natural Science Foundation of China (11972060,11721202)

摘要: 针对大迎角下非指令运动问题,通过自由摇滚、测力测压和粒子图像测速(PIV)等风洞试验,研究了带边条翼的翼身组合体的摇滚运动特性,得到了摇滚运动的俯仰角分区特性,揭示了摇滚运动的主控流动,讨论了形成摇滚运动的触发、偏离和维持机制。结果表明:带边条翼的翼身组合体在大迎角下会出现机翼摇滚运动;摇滚运动按照俯仰角可分为3个区域;固定点运动一区(俯仰角5°~35°),极限环摇滚区(俯仰角37.5°~50°),固定点运动二区(俯仰角55°~70°);极限环摇滚区又可分为机身非对称涡不主控区(俯仰角37.5°~45°)和部分主控区(俯仰角47.5°~50°);分析俯仰角为40°和50°的摇滚运动的流动机理发现,边条涡或融合边条涡尾流在零滚转角和非零滚转角下的演化规律分别构成了摇滚运动的触发和偏离机制,其在摇滚运动中的迟滞特性构成了摇滚运动的维持机制。

关键词: 机翼摇滚, 边条翼, 翼身组合体, 风洞试验, 流动机理

Abstract: Aiming at the problem of un-commanded motion at high angles of attack, we study the roll oscillation of wing-body configurations with strake wings through wind tunnel experiments such as free-to-roll tests, force and pressure measurement, and Particle Image Velocimetry (PIV). The pitch angle zones of roll oscillations are obtained, the dominant flow inducing wing rock revealed, and the triggering, deviation and sustaining mechanisms of roll oscillations discussed. The results show that the wing rock is onset over the wing-body configuration with strake wings at high angles of attack. The roll oscillation can be divided into three areas:fixed-point motion zone one (pitch angle 5°-35°), limit-cycle oscillation zone (pitch angle 37.5°-50°) and fixed-point motion zone two (pitch angle 55°-70°). The limit-cycle oscillation zone can be further divided into the fore-body vortex no-dominant zone (pitch angle 37.5°-45°) and partially-dominant zone (pitch angle 47.5°-50°). The analysis of the wing rock at pitch angles 40° and 50° reveals that the evolution of the wake of the strake wing vortex or merged strake wing vortex at zero roll angle and nonzero roll angle forms the triggering and deviation mechanisms, respectively. The hysteresis of the wake undergoing roll oscillations forms the sustaining mechanism.

Key words: wing rock, strake wings, wing-body configurations, wind tunnel tests, flow mechanism

中图分类号: