[1] 张志冰, 甄子洋, 江驹, 等. 舰载机自动着舰引导与控制综述[J].南京航空航天大学学报, 2018, 50(6):734-744. ZHANG Z B, ZHEN Z Y, JIANG J, et al. Review on development in guidance and control of automatic carrier landing of carrier-based aircraft[J].Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(6):734-744(in Chinese). [2] 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J].航空学报, 2017, 38(2):020435. ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(2):020435(in Chinese). [3] 武恒州, 罗福平, 石星辰, 等. 全自动着舰技术现状与发展趋势分析[J].飞机设计, 2020, 40(6):1-5. WU H Z, LUO F P, SHI X C, et al. Analysis on the status quo and development trend of automatic carrier landing technology[J].Aircraft Design, 2020, 40(6):1-5(in Chinese). [4] 王新华, 杨一栋, 朱华. 低动压着舰状态下飞机的操纵特性研究[J].飞行力学, 2007, 25(4):29-32, 36. WANG X H, YANG Y D, ZHU H. Research of handling characteristics of aircraft in low dynamic pressure situation[J].Flight Dynamics, 2007, 25(4):29-32, 36(in Chinese). [5] RUDOWSKY T, HYNES M, LUTER M, et al. Review of the carrier approach criteria for carrier-based aircraft-phase I:Final report[R]. Defense Technical Information Center, 2002. [6] GRALOW L J. Benefits of automation in carrier based fixed wing aircraft launch and recovery[R]. Redondo Beach:Naval Air Test Center, 2013. [7] SHAFER D M, PAUL R C, KING M J, et al. Aircraft carrier landing demonstration using manual control by a ship-based observer[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019 [8] DENHAM J W. Project MAGIC CARPET: "advanced controls and displays for precision carrier landings"[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016 [9] 吴文海, 汪节, 高丽, 等. MAGIC CARPET着舰技术分析[J].系统工程与电子技术, 2018, 40(9):2079-2091. WU W H, WANG J, GAO L, et al. Analysis on MAGIC CARPET carrier landing technology[J].Systems Engineering and Electronics, 2018, 40(9):2079-2091(in Chinese). [10] GREEN B E, FINDLAY D. CFD analysis of the F/A-18E super hornet during aircraft-carrier landing high-lift aerodynamic conditions[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016 [11] 陈国军, 张贞, 茅坪. 美军舰载机进近程序和标准化设计研究[J].航空标准化与质量, 2019(5):8-11, 18. CHEN G J, ZHANG Z, MAO P. Research on US army carrier-based aircraft approach procedure and standardization design[J].Aeronautic Standardization & Quality, 2019(5):8-11, 18(in Chinese). [12] 杨一栋, 代世俊, 余勇,等. 抑制舰尾流扰动的飞机着舰导引控制策略[J].海军航空工程学院学报, 2003, 18(1):115-120. YANG Y D, DAI S J, YU Y, et al. The control scheme of the restraint air wake disturbance carrier landing system[J].Journal of Naval Aeronautical Engineering Institute, 2003, 18(1):115-120(in Chinese). [13] GREEN B E, FINDLAY D. CFD analysis of the F/A-18E super hornet during aircraft-carrier landing high-lift aerodynamic conditions[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016. [14] 田杰荣, 徐彦军. 甲板风对着舰下滑道的影响研究[J].飞行力学, 2019, 37(6):12-16. TIAN J R, XU Y J. Impact of wind over deck on carrier landing glide slope[J].Flight Dynamics, 2019, 37(6):12-16(in Chinese). [15] 焦晓辉, 王鹏. 着舰环境对舰载机着舰的影响分析[J].科技创新与应用, 2019(16):20-21. JIAO X H, WANG P. Analysis of the influence of landing environment on carrier aircraft landing[J].Technology Innovation and Application, 2019(16):20-21(in Chinese). [16] 段卓毅, 王伟, 耿建中, 等. 舰载机人工进场着舰精确轨迹控制技术[J].航空学报, 2019, 40(4):622328. DUAN Z Y, WANG W, GENG J Z, et al. Precision trajectory manual control technologies for carrier-based aircraft approaching and landing[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(4):622328(in Chinese). [17] 罗飞, 张军红, 王博, 等. 基于非线性动态逆的舰载机直接升力航迹控制[J].飞行力学, 2021, 39(1):40-45, 53. LUO F, ZHANG J H, WANG B, et al. Direct lift trajectory control for carrier aircraft based on NDI[J].Flight Dynamics, 2021, 39(1):40-45, 53(in Chinese). [18] 罗飞,张军红,王博,等.基于直接力与动态逆的舰尾流抑制方法研究[J].航空学报, 2021, 42(7):124770.LUO F,et al. Research on air wake rejection based on direct lift control and nonlinear dynamic inversion control method[J].Acta Areonautica et Astronautica Sinica, 2021, 42(7):124770(in Chinese). [19] 史静平. 直接力纵向解耦控制方法研究与实时仿真系统[D]. 西安:西北工业大学, 2007. SHI J P. The research on the longitudinal direct lift control decoupling method and real-time simulation system[D]. Xi'an:Northwestern Polytechnical University, 2007(in Chinese). [20] GRALOW L J, PEACE L J, SHIPLEY J L. Evaluation of the direct lift control system installed in the F-8C airplane[R]. Redondo Beach:Naval Air Test Center, 1965. [21] 赵振宇, 韩维, 陈俊锋. 飞行员着舰下滑轨迹跟踪操纵策略研究[J].飞行力学, 2015, 33(6):519-522. ZHAO Z Y, HAN W, CHEN J F. Research of pilot control strategy to pursuit flight path in carrier landing[J].Flight Dynamics, 2015, 33(6):519-522(in Chinese). [22] 梁智生, 蔡俊杰, 郑小春. 舰载机动力补偿系统设计[J].舰船科学技术, 2019, 41(6):214-216. LIANG Z S, CAI J J, ZHENG X C. Design of power compensation system for shipborne aircraft[J].Ship Science and Technology, 2019, 41(6):214-216(in Chinese). [23] 董然, 原新, 张智, 等. 进场动力补偿器对自动着舰系统的影响[J].飞行力学, 2017, 35(1):34-38. DONG R, YUAN X, ZHANG Z, et al. Influence of approach power compensator on ACLS[J].Flight Dynamics, 2017, 35(1):34-38(in Chinese). [24] SODEL K M, SHAPIRO E Y. Eigenstructure assignment:A Tutorial[C]//Proceedings of the 1985 American Conference on Control,1985:456-467 [25] 李帆. 不确定性系统的解耦控制与稳定裕度分析[D]. 西安:西北工业大学, 2001. LI F. The decoupling control study and stability margin evaluation of multivariable uncertain systems[D]. Xi'an:Northwestern Polytechnical University, 2001(in Chinese). |