[1] CHEN Z, HUANG F, JIN X H, et al. A novel lightweight aerodynamic design for the wings of hypersonic vehicles cruising in the upper atmosphere[J].Aerospace Science and Technology, 2021, 109:106418. [2] WANG B, LIU W, CHENG Z T, et al. Active disturbance rejection attitude control for hypersonic vehicle based on intelligent stochastic robust optimization method[J].Complexity, 2020, 2020:1-13. [3] ZHENG Y N. Aerodynamic shape design of hypersonic vehicles via interval-robust optimization method including geometric tolerances and multiple flight conditions[J].Journal of Aerospace Engineering, 2021, 34(3):04021017. [4] NAVÓ À, BERGADA J M. Aerodynamic study of the NASA's X-43A hypersonic aircraft[J].Applied Sciences, 2020, 10(22):8211. [5] SHOU Y X, XU B, LIANG X H, et al. Aerodynamic/reaction-jet compound control of hypersonic reentry vehicle using sliding mode control and neural learning[J].Aerospace Science and Technology, 2021, 111:106564. [6] SURZHIKOV S T. Calculated analysis of experimental data on the aerothermodynamics of the hypersonic aircraft HIFiRE-1[J].Doklady Physics, 2020, 65(11):400-404. [7] HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston:AIAA,1994. [8] LIU Q L, BACCARELLA D, LEE T. Review of combustion stabilization for hypersonic airbreathing propulsion[J].Progress in Aerospace Sciences, 2020, 119:100636. [9] 黄伟, 夏智勋. 美国高超声速飞行器技术研究进展及其启示[J].国防科技, 2011, 32(3):17-20, 25. HUANG W, XIA Z X. Research progress and apocalypses on the American hypersonic vehicle technology[J].National Defense Science & Technology, 2011, 32(3):17-20, 25(in Chinese). [10] 邓帆, 谭慧俊, 董昊, 等. 预冷组合动力高超声速空天飞机关键技术研究进展[J].推进技术, 2018, 39(1):1-13. DENG F, TAN H J, DONG H, et al. Progress on key technologies of hypersonic aerospace plane with pre-cooled combined propulsion[J].Journal of Propulsion Technology, 2018, 39(1):1-13(in Chinese). [11] LI Q W, DOU M F, TAN B, et al. Electromagnetic-thermal integrated design optimization for hypersonic vehicle short-time duty PM brushless DC motor[J].International Journal of Aerospace Engineering, 2016, 2016:1-9. [12] CHENG X J, FAN Y X, CAI D. Effect of fuel injection with mixer in TBCC Hyperburner:AIAA-2014-3747[R]. Reston:AIAA, 2014. [13] 廖孟豪, 李宪开, 窦相民. 美国高超声速作战飞机气动布局演化分析[J].航空科学技术, 2020, 31(11):3-6. LIAO M H, LI X K, DOU X M. Evolution analysis of aerodynamic configuration of hypersonic military aircraft in USA[J].Aeronautical Science & Technology, 2020, 31(11):3-6(in Chinese). [14] 李宪开, 王霄, 柳军, 等. 水平起降高超声速飞机气动布局技术研究[J].航空科学技术, 2020, 31(11):7-13. LI X K, WANG X, LIU J, et al. Research on the aerodynamic layout design for the horizontal take-off and landing hypersonic aircraft[J].Aeronautical Science & Technology, 2020, 31(11):7-13(in Chinese). [15] YAN T, CAI Y L, WEI C S. Evasion-faced fast adaptive neural attitude control for generic hypersonic vehicles with structural and parametric uncertainties[J].Mathematical Problems in Engineering, 2021, 2021:1-12. [16] WANG J, ZONG Q, HE X, et al. Adaptive finite-time control for a flexible hypersonic vehicle with actuator fault[J].Mathematical Problems in Engineering, 2013, 2013:1-10. [17] CHONG Z Y, GUO J G, ZHAO B, et al. Finite-time integrated guidance and control system for hypersonic vehicles[J].Transactions of the Institute of Measurement and Control, 2021, 43(4):842-853. [18] YE Y D. How does the rarefaction of the air affect hypersonic vehicles[J].Acta Mechanica Sinica, 2021, 37(1):18-19. [19] WANG W J, WU Z P, WANG D H, et al. Hypersonic vehicle aerodynamic optimization using field metamodel-enhanced sequential approximate optimization[J].International Journal of Aerospace Engineering, 2021, 2021:1-12. [20] HE J H, LIU Y B, LI S L, et al. Minimum-fuel ascent of hypersonic vehicle considering control constraint using the improved pigeon-inspired optimization algorithm[J].International Journal of Aerospace Engineering, 2020, 2020:1-21. [21] WEI X, LIU L, WANG Y J, et al. Reentry trajectory optimization for a hypersonic vehicle based on an improved adaptive fireworks algorithm[J].International Journal of Aerospace Engineering, 2018, 2018:1-17. [22] SHI L, YUAN S R, YAO B. Unconventionally designed tracking loop adaptable to plasma sheath channel for hypersonic vehicles[J].Sensors, 2020, 21(1):21. [23] MA K, LI Y K, ZHU L, et al. Spike root oblique jet effect on drag and heat load reduction performance for hypersonic vehicles[J].Acta Astronautica, 2020, 177:588-603. [24] GOU J J, YAN Z W, HU J X, et al. The heat dissipation, transport and reuse management for hypersonic vehicles based on regenerative cooling and thermoelectric conversion[J].Aerospace Science and Technology, 2021, 108:106373. [25] VIVIANI A, APROVITOLA A, PEZZELLA G, et al. CFD design capabilities for next generation high-speed aircraft[J].Acta Astronautica, 2021, 178:143-158. [26] YU C J, JIANG J, ZHEN Z Y, et al. Adaptive backstepping control for air-breathing hypersonic vehicle subject to mismatched uncertainties[J].Aerospace Science and Technology, 2020, 107:106244. [27] ZHANG D, CHENG F, TANG S, et al. Combined modeling technology for external flow field of wide-speed supersonic/hypersonic vehicles[J].Aerospace Science and Technology, 2020, 107:106323. [28] ZHANG S L, LI X, ZUO J Y, et al. Research progress on active thermal protection for hypersonic vehicles[J].Progress in Aerospace Sciences, 2020, 119:100646. [29] KAZMAR R. Airbreathing hypersonic propulsion at Pratt & Whitney-overview:AIAA-2002-5144[R].. Reston:AIAA, 2005. [30] MARSHALL L, BAHM C, CORPENING G, et al. Overview with results and lessons learned of the X-43A Mach 10 flight:AIAA-2005-3336[R]. Reston:AIAA, 2005. [31] HUETER U, TURNER J. Rocket-based combined cycle activities in the Advanced Space Transportation Program office:AIAA-1999-2352[R]. Reston:AIAA, 1999. [32] 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J].力学进展, 2009, 39(6):716-739. WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J].Advances in Mechanics, 2009, 39(6):716-739(in Chinese). [33] 龚春林, 陈兵. 组合循环动力在水平起降天地往返飞行器上的应用[J].科技导报, 2020, 38(12):25-32. GONG C L, CHEN B. Application analysis of combined cycle engine in horizontal take-off and landing aerospace vehicles[J].Science & Technology Review, 2020, 38(12):25-32(in Chinese). [34] 张留欢, 杜泉, 张蒙正. RBCC发动机火箭-冲压模态理想热力循环优化分析[J].火箭推进, 2016, 42(3):21-25, 32. ZHANG L H, DU Q, ZHANG M Z. Optimum analysis on ideal thermodynamic cycle of RBCC engine at special rocket-ramjet mode[J].Journal of Rocket Propulsion, 2016, 42(3):21-25, 32(in Chinese). [35] 张蒙正, 路媛媛. 火箭冲压组合动力系统研发再思考[J].推进技术, 2018, 39(10):2219-2226. ZHANG M Z, LU Y Y. Consideration once again to rocket ramjet combined engine[J].Journal of Propulsion Technology, 2018, 39(10):2219-2226(in Chinese). [36] 唐硕, 龚春林, 陈兵. 组合动力空天飞行器关键技术[J].宇航学报, 2019, 40(10):1103-1114. TANG S, GONG C L, CHEN B. The key technologies for aerospace with combined cycle engine[J].Journal of Astronautics, 2019, 40(10):1103-1114(in Chinese). [37] 佘文学, 刘凯, 乔鸿. 组合动力空天飞行器制导技术发展分析[J].战术导弹技术, 2020(5):52-65. SHE W X, LIU K, QIAO H. Development analysis of guidance technology for aerospace vehicle based on combination engine[J].Tactical Missile Technology, 2020(5):52-65(in Chinese). [38] 张蒙正, 李平, 陈祖奎. 组合循环动力系统面临的挑战及前景[J].火箭推进, 2009, 35(1):1-8, 15. ZHANG M Z, LI P, CHEN Z K. Challenge and perspective of combined cycle propulsion system[J].Journal of Rocket Propulsion, 2009, 35(1):1-8, 15(in Chinese). [39] 张冬青, 宋文艳, 柴政, 等. 组合循环发动机飞机/发动机性能一体化分析[J].航空动力学报, 2017, 32(10):2498-2508. ZHANG D Q, SONG W Y, CHAI Z, et al. Aircraft/engine performance integrated analysis on combined cycle engine[J].Journal of Aerospace Power, 2017, 32(10):2498-2508(in Chinese). [40] 张岩, 朱韶华, 刘刚, 等. 双模态冲压发动机中的模态转换研究综述[J].推进技术, 2013, 34(12):1719-1728. ZHANG Y, ZHU S H, LIU G, et al. An overview on mode transition in dual mode ramjet[J].Journal of Propulsion Technology, 2013, 34(12):1719-1728(in Chinese). [41] 王浩苏, 尕永婧, 黄辉, 等. 国内外先进推进技术发展综述[J].宇航总体技术, 2019, 3(2):62-70. WANG H S, GA Y J, HUANG H, et al. Progress on the advanced propulsion technologies of launch vehicles[J].Astronautical Systems Engineering Technology, 2019, 3(2):62-70(in Chinese). [42] 金捷, 陈敏, 刘玉英. 涡轮基组合循环发动机[M]. 北京:国防工业出版社, 2019:1-2. JIN J, CHEN M, LIU Y Y. Turbine based combined cycle engine[M]. Beijing:National Defense Industry Press, 2019:1-2(in Chinese). [43] 蔡依雯, 金志光, 周建兴, 等. 一种多热力循环组合发动机进气道设计方案[J].航空学报, 2020, 41(11):123745. CAI Y W, JIN Z G, ZHOU J X, et al. Design scheme of combined multiple thermodynamic cycle engine inlet[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):123745(in Chinese). [44] 张华军, 郭荣伟, 李博. TBCC进气道研究现状及其关键技术[J].空气动力学学报, 2010, 28(5):613-620. ZHANG H J, GUO R W, LI B. Research status of TBCC inlet and its key technologies[J].Acta Aerodynamica Sinica, 2010, 28(5):613-620(in Chinese). [45] 向先宏, 钱战森, 张铁军. TBCC进气道模态转换气动技术研究综述[J].航空科学技术, 2017, 28(1):10-18. XIANG X H, QIAN Z S, ZHANG T J. An overview of turbine-based combined cycle(TBCC) inlet mode transition aerodynamic technology[J].Aeronautical Science & Technology, 2017, 28(1):10-18(in Chinese). [46] 刘洋, 何国强, 刘佩进, 等. RBCC组合循环推进系统研究现状和进展[J].固体火箭技术, 2009, 32(3):288-293. LIU Y, HE G Q, LIU P J, et al. Present situation and progress of investigation on rocket based combined cycle(RBCC)propulsion system[J].Journal of Solid Rocket Technology, 2009, 32(3):288-293(in Chinese). [47] 闫晓东, 贾晓娟, 吕石. RBCC动力飞行器等动压爬升方法[J].固体火箭技术, 2013, 36(6):711-714. YAN X D, JIA X J, LV S. An ascent trajectory design method with constant dynamic pressure for RBCC powered vehicle[J].Journal of Solid Rocket Technology, 2013, 36(6):711-714(in Chinese). [48] 吕翔, 何国强, 刘佩进. RBCC飞行器爬升段轨迹设计方法[J].航空学报, 2010, 31(7):1331-1337. LU X, HE G Q, LIU P J. Ascent trajectory design method for RBCC-powered vehicle[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1331-1337(in Chinese). [49] 陈婷婷, 孙春贞. RBCC飞行器上升段飞行走廊规划方法[J].兵工自动化, 2019, 38(12):50-53. CHEN T T, SUN C Z. Flight corridor planning method of RBCC ascent[J].Ordnance Industry Automation, 2019, 38(12):50-53(in Chinese). [50] 龚春林, 韩璐. RBCC可重复使用运载器上升段轨迹优化设计[J].固体火箭技术, 2012, 35(3):290-295. GONG C L, HAN L. Optimization of ascent trajectory for RBCC-powered RLV[J].Journal of Solid Rocket Technology, 2012, 35(3):290-295(in Chinese). [51] 王厚庆, 何国强, 刘佩进. 以RBCC为动力的巡航飞行器有效载荷质量敏感性分析[J].固体火箭技术, 2007, 30(2):87-89, 93. WANG H Q, HE G Q, LIU P J. Sensitivity analysis on payload mass of RBCC-powered cruise vehicle[J].Journal of Solid Rocket Technology, 2007, 30(2):87-89, 93(in Chinese). [52] 韦宝禧, 凌文辉, 冮强, 等. TRRE发动机关键技术分析及推进性能探索研究[J].推进技术, 2017, 38(2):298-305. WEI B X, LING W H, GANG Q, et al. Analysis of key technologies and propulsion performance research of TRRE engine[J].Journal of Propulsion Technology, 2017, 38(2):298-305(in Chinese). [53] 刘君,袁化成,葛宁. 串联式TBCC进气道模态转换模拟器设计及其特性分析[J].航空学报, 2016, 37(12):3675-3684. LIU J, YUAN H C, GE N. Design and flow characteristics analysis of mode transition simulator for tandem type TBCC inlet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3675-3684. [54] 金捷, 陈敏. 涡轮冲压组合动力装置特点及研究进展[J].航空制造技术, 2014, 57(9):32-35. JIN J, CHEN M. Brief introduction on technology development of turbine based combined cycle engine[J].Aeronautical Manufacturing Technology, 2014, 57(9):32-35(in Chinese). [55] 马松, 林鹏, 左林玄, 等. 并联TBCC动力对高超声速飞行器性能的影响[J].国防科技大学学报, 2019, 41(2):1-7. MA S, LIN P, ZUO L X, et al. Influence of over-under TBCC on the performance of hypersonic aircraft[J].Journal of National University of Defense Technology, 2019, 41(2):1-7(in Chinese). [56] 朱伟, 王霄, 华正旭, 等. 宽速域组合动力TBCC新型三维内转式进气道设计分析[J].飞机设计, 2019, 39(3):13-17, 38. ZHU W, WANG X, HUA Z X, et al. The design and analysis of wide speed range turbine based combine cycle three-dimensional inward turning inlet[J].Aircraft Design, 2019, 39(3):13-17, 38(in Chinese). [57] 王巍巍, 郭琦, 曾军, 等. 国外TBCC发动机发展研究[J].燃气涡轮试验与研究, 2012, 25(3):58-62. WANG W W, GUO Q, ZENG J, et al. TBCC technology research abroad[J].Gas Turbine Experiment and Research, 2012, 25(3):58-62(in Chinese). [58] 张明阳, 王占学, 刘增文, 等. Ma4一级内并联式TBCC发动机模态转换性能分析[J].推进技术, 2017, 38(2):315-322. ZHANG M Y, WANG Z X, LIU Z W, et al. Analysis of mode transition performance for a Mach 4 over-under TBCC engine[J].Journal of Propulsion Technology, 2017, 38(2):315-322(in Chinese). [59] 宋自航, 唐海龙, 陈敏. 高超声速并联TBCC总体性能分析与模态转换仿真[J].航空发动机, 2019, 45(1):33-39. SONG Z H, TANG H L, CHEN M. Overall performance analysis and modal conversion simulation of hypersonic parallel TBCC[J].Aeroengine, 2019, 45(1):33-39(in Chinese). [60] 郭荣荣, 金志光, 李猛, 等. 二元外并联RBCC进气道变几何方案研究[J].推进技术, 2017, 38(3):481-488. GUO R R, JIN Z G, LI M, et al. Investigation of a 2D variable geometry over/under type inlet for RBCC[J].Journal of Propulsion Technology, 2017, 38(3):481-488(in Chinese). [61] 张鹏峰. 国外RBCC组合循环发动机发展趋势及关键技术[J].飞航导弹, 2013(8):68-71. ZHANG P F. Development trend and key technology of foreign RBCC combined cycle engine[J].Aerodynamic Missile Journal, 2013(8):68-71(in Chinese). [62] CARL EHRLICH J. Early studies of RBCC applications and lessons learned for today:AIAA-2000-3105[R]. Reston:AIAA, 2000. [63] 王亚军. 基于热力调节具有宽适应性的RBCC亚燃模态研究[D]. 西安:西北工业大学, 2017. WANG Y J. Investigation of ramjet mode in RBCC for wide adaptability based on thermal adjustment[D]. Xi'an:Northwestern Polytechnical University, 2017(in Chinese). [64] 龚春林, 韩璐, 谷良贤. 适应于RBCC运载器的轨迹优化建模研究[J].宇航学报, 2013, 34(12):1592-1598. GONG C L, HAN L, GU L X. Research on modeling of trajectory optimization for RBCC-powered RLV[J].Journal of Astronautics, 2013, 34(12):1592-1598(in Chinese). [65] 薛瑞, 胡春波, 吕翔, 等. 两级入轨RBCC等动压助推弹道设计与推进剂流量分析[J].固体火箭技术, 2013, 36(2):155-160. XUE R, HU C B, LV X, et al. RBCC constant dynamic pressure booster trajectory design and propellant mass flowrate analysis for TSTO transportation system[J].Journal of Solid Rocket Technology, 2013, 36(2):155-160(in Chinese). [66] 文科, 李旭昌, 马岑睿, 等. 国外高超声速组合推进技术概述[J].航天制造技术, 2011(1):4-7, 20. WEN K, LI X C, MA C R, et al. Hypersonic combined-cycle propulsion technology based on scramjet[J].Aerospace Manufacturing Technology, 2011(1):4-7, 20(in Chinese). [67] SPRINGER A. Historic trends in RLV design:Lessons applicable to future concepts:AIAA-2003-4589[R]. Reston:AIAA, 2003. [68] 刘凯. 涡轮增压固体冲压发动机匹配规律和性能研究[D]. 西安:西北工业大学, 2018. LIU K. Investigation on matching law and performance in turbocharged solid propellant ramjet[D]. Xi'an:Northwestern Polytechnical University, 2018(in Chinese). [69] 李永洲, 李哲, 李光熙, 等. ATR/冲压组合动力高超声速飞行器性能分析[J].火箭推进, 2018, 44(3):6-11. LI Y Z, LI Z, LI G X, et al. Performance analysis of hypersonic aircraft with ATR/ramjet combined power[J].Journal of Rocket Propulsion, 2018, 44(3):6-11(in Chinese). [70] 南向谊, 王拴虎, 李平. 空气涡轮火箭发动机研究的进展及展望[J].火箭推进, 2008, 34(6):31-35. NAN X Y, WANG S H, LI P. Investigation on status and prospect of air turbine rocket[J].Journal of Rocket Propulsion, 2008, 34(6):31-35(in Chinese). [71] PAN H L, ZHOU P. Performance analysis of liquid air turborocket:AIAA-2008-0070[R]. Reston:AIAA, 2008. [72] BOSSARD J, CHRISTENSEN K, FEDUN M. Return of the solid fuel gas generator ATR:AIAA-1987-1997[R]. Reston:AIAA, 1987. [73] SIEBENHAAR A, BOGAR T. Integration and vehicle performance assessment of the aerojet "TriJet" combined-cycle engine:AIAA-2009-7420[R]. Reston:AIAA, 2009. [74] BULMAN M, SIEBENHAAR A. Combined cycle propulsion:Aerojet innovations for practical hypersonic vehicles:AIAA-2011-2397[R]. Reston:AIAA, 2011. [75] LONGSTAFF R, BOND A. The SKYLON project:AIAA-2011-2244[R]. Reston:AIAA, 2011. [76] DAVIES R, BOND A. The SKYLON spaceplane[C]//IEE Colloquium on Satellite Launch Vehicles, 1999. [77] 牛文, 李文杰. SKYLON飞行器与SABRE发动机研究[J].飞航导弹, 2013(3):70-75. NIU W, LI W J. SKYLON aircraft and SABRE engine research[J].Aerodynamic Missile Journal, 2013(3):70-75(in Chinese). [78] 陈静敏, 蒋妮, 郑日恒. SABRE发动机吸气模式下的总体性能分析[C]//第五届冲压发动机会议, 2015. CHEN J M, JIANG N, ZHENG R H. Overall performance analysis of SABRE engine in suction mode[C]//The 5th Ramjet Conference, 2015(in Chinese). [79] 尤延铖, 安平. 欧洲的高超声速推进项目及其项目管理[J].燃气涡轮试验与研究, 2013, 26(6):1-7. YOU Y C, AN P. European hypersonic projects and project management[J].Gas Turbine Experiment and Research, 2013, 26(6):1-7(in Chinese). [80] 宋文艳, 张冬青, 吕重阳. 多种组合动力方案性能对比研究[J].实验流体力学, 2018, 32(5):19-28. SONG W Y, ZHANG D Q, LYU C Y. Compared study of performances of combined cycle engines[J].Journal of Experiments in Fluid Mechanics, 2018, 32(5):19-28(in Chinese). [81] HUETER U. Advanced reusable transportation technologies project overview:AIAA-1996-4603[R]. Reston:AIAA, 1996. [82] 林鹏, 左林玄, 王霄, 等. 未来作战飞机飞发一体化技术的思考[J].航空动力, 2018(2):52-57. LIN P, ZUO L X, WANG X, et al. Discussion on aircraft/engine integration technology of future combat aircraft[J].Aerospace Power, 2018(2):52-57(in Chinese). [83] 罗世彬. 高超声速飞行器机体/发动机一体化及总体多学科设计优化方法研究[D]. 长沙:国防科学技术大学, 2004. LUO S B. Research on airframe/engine integration issues and multidisciplinary design optimization methods for airbreathing hypersonic vehicle[D]. Changsha:National University of Defense Technology, 2004(in Chinese). |