岳彩旭1, 张俊涛1, 刘献礼1, 陈志涛1, Steven Y. LIANG2, Lihui WANG2
收稿日期:
2020-12-25
修回日期:
2021-02-06
发布日期:
2021-05-24
通讯作者:
岳彩旭
E-mail:yuecaixu@hrbust.edu.cn
基金资助:
YUE Caixu1, ZHANG Juntao1, LIU Xianli1, CHEN Zhitao1, Steven Y. LIANG2, Lihui WANG2
Received:
2020-12-25
Revised:
2021-02-06
Published:
2021-05-24
Supported by:
摘要: 机床加工性能和刀具切削性能的发展使得薄壁件的高效率和高精密加工成为可能,也使得薄壁件在航空航天领域得到更广泛应用。薄壁零件结构复杂、刚度低,在铣削过程中易发生变形,因此精准预测与控制薄壁件的加工变形是机加工领域亟需解决的工艺难题。通过对薄壁件分类以及加工工艺分析,归纳总结引起薄壁件加工变形的因素,对加工变形影响最为关键的铣削力计算模型进行简述;结合国内外薄壁件变形预测与控制方法的研究,以弹塑性和数值模拟方法对薄壁件加工变形进行预测,通过加工工艺优化、辅助支撑技术、高速切削技术和数控补偿技术等方法对薄壁件加工过程的变形量进行控制;基于数据驱动数字孪生体的更新迭代,实现薄壁件实际加工过程的孪生及薄壁件变形预测与控制,构建了以数字孪生为平台的薄壁件加工变形预测与控制理论框架;最后对数字孪生在薄壁件加工变形预测及控制的发展与应用提出展望。
中图分类号:
岳彩旭, 张俊涛, 刘献礼, 陈志涛, Steven Y. LIANG, Lihui WANG. 薄壁件铣削过程加工变形研究进展[J]. 航空学报, 2022, 43(4): 525164.
YUE Caixu, ZHANG Juntao, LIU Xianli, CHEN Zhitao, Steven Y. LIANG, Lihui WANG. Research progress on machining deformation of thin-walled parts in milling process[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525164.
[1] 田海东. 铝合金薄壁结构件铣削变形预测与工艺参数优化[D]. 济南:山东大学, 2020. TIAN H D. Prediction of milling deformation and optimization of process parameters of aluminum alloy thin-walled structural parts[D]. Jinan:Shandong University, 2020(in Chinese). [2] 章熠鑫. 钛合金薄壁件加工变形控制工艺基础研究[D]. 南京:南京航空航天大学, 2013:12-14. ZHANG Y X. Process research on control the deformation of titanium alloy thin-wall parts[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:12-14(in Chinese). [3] 李跃. 薄壁零件高速铣削工艺与仿真研究[D]. 沈阳:东北大学, 2008:13-14. LI Y. Study on technology and simulation for high-speed milling of thin-walled workpiece[D]. Shenyang:Northeastern University, 2008:13-14(in Chinese). [4] 王颖. 薄壁件高速铣削加工变形误差预测及有限元分析[D]. 天津:河北工业大学, 2013:8-9. WANG Y. The error prediction and finite element analysis of thin-walled parts machining deformation in high speed milling[D]. Tianjin:Hebei University of Technology, 2013:8-9(in Chinese). [5] LI X Y, LI L, YANG Y F, et al. Machining deformation of single-sided component based on finishing allowance optimization[J]. Chinese Journal of Aeronautics, 2020, 33(9):2434-2444. [6] 潘和林. 钛合金薄壁件铣削变形的预测与控制[D]. 济南:山东大学, 2016:14-15. PAN H L. Deflection prediction and control in milling of thin-wall titanium alloy components[D]. Jinan:Shandong University, 2016:14-15(in Chinese). [7] 于春涛. 航空薄壁构件加工变形研究[D]. 上海:上海交通大学, 2015:10-13. YU C T. Reaserch on deformation method of aerospace thin-walled structures[D]. Shanghai:Shanghai Jiao Tong University, 2015:10-13(in Chinese). [8] 董辉跃. 航空整体结构件加工过程的数值仿真[D]. 杭州:浙江大学, 2004:18-19. DONG H Y. Machining process simulation of aerospace monolithic component[D]. Hangzhou:Zhejiang University, 2004:18-19(in Chinese). [9] 秦国华, 吴竹溪, 张卫红. 薄壁件的装夹变形机理分析与控制技术[J]. 机械工程学报, 2007, 43(4):211-216, 223. QIN G H, WU Z X, ZHANG W H. Analysis and control technique of fixturing deformation mechanism of thin-walled workpiece[J]. Chinese Journal of Mechanical Engineering, 2007, 43(4):211-216, 223(in Chinese). [10] 孙杰. 航空整体结构件数控加工变形校正理论和方法研究[D]. 杭州:浙江大学, 2003:17-19. SUN J. Study on correction theory and method for distorted aeronautical monolithic component due to NC machining[D]. Hangzhou:Zhejiang University, 2003:17-19(in Chinese). [11] 张茹. 薄壁件切削变形仿真与实验研究[D]. 济南:山东建筑大学, 2016:3-5. ZHANG R. Simulation and experimental study of cutting deformation of thin-walled parts[D]. Jinan:Shandong Jianzhu University, 2016:3-5(in Chinese). [12] 张峥. 飞机弱刚性铝合金结构件的残余应力和加工变形控制技术研究[D]. 南京:南京航空航天大学, 2016:19-23. ZHANG Z. Research on residual stress and machining distortion of aeronautic weak rigidity in aluminum structure[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:19-23(in Chinese). [13] 李目. 基于变形控制的薄壁件铣削加工参数优化及仿真研究[D]. 南京:南京航空航天大学, 2010:12-13. LI M. Research on the optimization of milling parameters and simulation of thin-walled parts based on the machining errors control[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:12-13(in Chinese). [14] 马伟. 航空铝合金薄壁件切削过程及加工变形仿真分析[D]. 长春:吉林大学, 2020:14-15. MA W. Simulation analysis of cutting process and machining deformation of aviation aluminum alloy thin-walled parts[D]. Changchun:Jilin University, 2020:14-15(in Chinese). [15] DING T C, ZHANG S, WANG Y W, et al. Empirical models and optimal cutting parameters for cutting forces and surface roughness in hard milling of AISI H13 steel[J]. The International Journal of Advanced Manufacturing Technology, 2010, 51(1):45-55. [16] ZHAO C, FU T G, LIU Y B, et al. Different impact on the stability limits caused by the selection of milling force coefficient under the state of high-speed milling[J]. International Journal of Hybrid Information Technology, 2015, 8(8):153-160. [17] 王立涛, 柯映林, 黄志刚. 航空铝合金7050-T7451铣削力模型的实验研究[J]. 中国机械工程, 2003, 14(19):1684-1686. WANG L T, KE Y L, HUANG Z G. Experimental study on milling-force model in aviation aluminum-alloy[J]. China Mechanical Engineering, 2003, 14(19):1684-1686(in Chinese). [18] 郭魂. 航空多框整体结构件铣削变形机理与预测分析研究[D]. 南京:南京航空航天大学, 2005:24-35. GUO H. Study on mechanism and prediction analysis of machining distortion for aero-multi-frame monolithic structure parts[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2005:24-35(in Chinese). [19] 秦旭达, 赵剑波, 张剑刚, 等. 基于回归法的钛合金(Ti-6Al-4V)插铣铣削力建模分析[J]. 北京工业大学学报, 2006, 32(8):737-740. QIN X D, ZHAO J B, ZHANG J G, et al. Analysis and modeling about milling force in plunge milling for Ti-6AI-4V based on regression[J]. Journal of Beijing University of Technology, 2006, 32(8):737-740(in Chinese). [20] KIM G M, CHU C N. Mean cutting force prediction in ball-end milling using force map method[J]. Journal of Materials Processing Technology, 2004, 146(3):303-310. [21] KATTAN I A, VENKATESH V C, CURRIE K R. A comparative study of the effect of tool geometry with negative SCEAs on machining parameters[J]. International Journal of Production Research, 1998, 36(4):909-938. [22] FANG N. An improved model for oblique cutting and its application to chip-control research[J]. Journal of Materials Processing Technology, 1998, 79(1-3):79-85. [23] WANG J J J, LIANG S Y, BOOK W J. Convolution analysis of milling force pulsation[J]. Journal of Engineering for Industry, 1994, 116(1):17-25. [24] LI H Z, LI X P. Milling force prediction using a dynamic shear length model[J]. International Journal of Machine Tools and Manufacture, 2002, 42(2):277-286. [25] TSAI C L, LIAO Y S. Prediction of cutting forces in ball-end milling by means of geometric analysis[J]. Journal of Materials Processing Technology, 2008, 205(1-3):24-33. [26] FU Z T, ZHANG X M, WANG X L, et al. Analytical modeling of chatter vibration in orthogonal cutting using a predictive force model[J]. International Journal of Mechanical Sciences, 2014, 88:145-153. [27] 周鑫, 李迎光, 刘浩, 等. 基于特征的飞机复杂结构件切削力快速预测与评价方法[J]. 中国机械工程, 2015, 26(7):886-891. ZHOU X, LI Y G, LIU H, et al. A feature-based cutting force fast prediction and evaluation for complex aircraft structure parts[J]. China Mechanical Engineering, 2015, 26(7):886-891(in Chinese). [28] 罗智文, 赵文祥, 焦黎, 等. 基于斜角切削的曲线端铣切削力建模[J]. 机械工程学报, 2016, 52(9):184-192. LUO Z W, ZHAO W X, JIAO L, et al. Cutting force modeling in end milling of curved geometries based on oblique cutting process[J]. Journal of Mechanical Engineering, 2016, 52(9):184-192(in Chinese). [29] 卢泽生, 杨亮. 精密超声振动切削频率对切削力影响规律的研究与仿真[J]. 航空精密制造技术, 2006, 42(5):10-14. LU Z S, YANG L. Theoretical analysis and simulation of the effect of frequency on cutting force in precision vibration machining[J]. Aviation Precision Manufacturing Technology, 2006, 42(5):10-14(in Chinese). [30] MARTELLOTTI M E. An analysis of the milling process[J]. Transactions of the ASME, 1941, 63:667-700. [31] FU H J, DEVOR R E, KAPOOR S G. A mechanistic model for the prediction of the force system in face milling operations[J]. Journal of Engineering for Industry, 1984, 106(1):81-88. [32] 王保升. 瞬时铣削力模型参数辨识及其试验研究[D].镇江:江苏大学, 2011:25-42. WANG B S. Parameters identification of instantaneous milling force model and its experimental investigation[D]. Zhenjiang:Jiangsu University, 2011:25-42(in Chinese). [33] LEE P, ALTINTAŞ Y. Prediction of ball-end milling forces from orthogonal cutting data[J]. International Journal of Machine Tools and Manufacture, 1996, 36(9):1059-1072. [34] ALTINTAS Y, SPENCE A, TLUSTY J. End milling force algorithms for CAD systems[J]. CIRP Annals, 1991, 40(1):31-34. [35] AZEEM A, FENG H Y, WANG L H. Simplified and efficient calibration of a mechanistic cutting force model for ball-end milling[J]. International Journal of Machine Tools and Manufacture, 2004, 44(2-3):291-298. [36] KIM G M, CHO P J, CHU C N. Cutting force prediction of sculptured surface ball-end milling using Z-map[J]. International Journal of Machine Tools and Manufacture, 2000, 40(2):277-291. [37] 张臣, 周儒荣, 庄海军, 等. 基于Z-map模型的球头铣刀铣削力建模与仿真[J]. 航空学报, 2006, 27(2):347-352. ZHANG C, ZHOU R R, ZHUANG H J, et al. Modeling and simulation of ball-end milling forces based on Z-map model[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(2):347-352(in Chinese). [38] 顾红欣. 高速铣削过程铣削力建模与仿真及实验研究[D]. 天津:天津大学, 2007:18-38. GU H X. Milling force modeling, simulation and experimental study of high speed milling[D]. Tianjin:Tianjin University, 2007:18-38(in Chinese). [39] YANG M Y, PARK H. The prediction of cutting force in ball-end milling[J]. International Journal of Machine Tools and Manufacture, 1991, 31(1):45-54. [40] 关立文, 赵肖, 王立平. 基于次摆线轨迹的铣削层厚度模型[J]. 清华大学学报(自然科学版), 2017, 57(11):1185-1189. GUAN L W, ZHAO X, WANG L P. Milling-layer thickness model based on a trochoid trajectory[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(11):1185-1189(in Chinese). [41] SHARMA V S, DHIMAN S, SEHGAL R, et al. Estimation of cutting forces and surface roughness for hard turning using neural networks[J]. Journal of Intelligent Manufacturing, 2008, 19(4):473-483. [42] 赵寿玲. BP神经网络结构优化方法的研究及应用[D]. 苏州:苏州大学, 2010:15-33. ZHAO S L. Researches and application on the structure optimization of the BP neural networks[D]. Suzhou:Soochow University, 2010:15-33(in Chinese). [43] ZHENG J X, ZHANG M J, MENG Q X. Tool cutting force modeling in high speed milling using PSO-BP neural network[J]. Key Engineering Materials, 2008, 375-376:515-519. [44] FARAHNAKIAN M, RAZFAR M R, MOGHRI M, et al. The selection of milling parameters by the PSO-based neural network modeling method[J]. The International Journal of Advanced Manufacturing Technology, 2011, 57(1):49-60. [45] HAO W S, ZHU X S, LI X F, et al. Prediction of cutting force for self-propelled rotary tool using artificial neural networks[J]. Journal of Materials Processing Technology, 2006, 180(1-3):23-29. [46] SAFFAR R J, RAZFAR M R, ZAREI O, et al. Simulation of three-dimension cutting force and tool deflection in the end milling operation based on finite element method[J]. Simulation Modelling Practice and Theory, 2008, 16(10):1677-1688. [47] 张平. 7055铝合金表面粗糙度和切削力模型构建及有限元分析[D]. 湘潭:湖南科技大学, 2015:22-37. ZHANG P. 7055 aluminum alloy surface roughness and cutting force model and finite element simulation[D]. Xiangtan:Hunan University of Science and Technology, 2015:22-37(in Chinese). [48] 刘献礼, 刘强, 岳彩旭, 等. 切削过程中的智能技术[J]. 机械工程学报, 2018, 54(16):45-61. LIU X L, LIU Q, YUE C X, et al. Intelligent machining technology in cutting process[J]. Journal of Mechanical Engineering, 2018, 54(16):45-61(in Chinese). [49] 韩冰. 航空薄壁结构零件加工变形的有限元仿真[D]. 天津:天津大学, 2012:9-12. HAN B. Simulation on deflection of aeronautical thin-wall workpiece by FE model[D]. Tianjin:Tianjin University, 2012:9-12(in Chinese). [50] SHIRASE K, ALTINTAŞ Y. Cutting force and dimensional surface error generation in peripheral milling with variable pitch helical end Mills[J]. International Journal of Machine Tools and Manufacture, 1996, 36(5):567-584. [51] RATCHEV S, GOVENDER E, NIKOV S, et al. Force and deflection modelling in milling of low-rigidity complex parts[J]. Journal of Materials Processing Technology, 2003, 143-144:796-801. [52] RATCHEV S, LIU S, HUANG W, et al. A flexible force model for end milling of low-rigidity parts[J]. Journal of Materials Processing Technology, 2004, 153-154:134-138. [53] RATCHEV S, LIU S, HUANG W, et al. An advanced FEA based force induced error compensation strategy in milling[J]. International Journal of Machine Tools and Manufacture, 2006, 46(5):542-551. [54] BUDAK E, ALTINTAS Y. Modeling and avoidance of static form errors in peripheral milling of plates[J]. International Journal of Machine Tools and Manufacture, 1995, 35(3):459-476. [55] TSAI J S, LIAO C L. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces[J]. Journal of Materials Processing Technology, 1999, 94(2-3):235-246. [56] LIU S M, SHAO X D, GE X B, et al. Simulation of the deformation caused by the machining cutting force on thin-walled deep cavity parts[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9):3503-3517. [57] WU G, LI G X, PAN W C, et al. A prediction model for the milling of thin-wall parts considering thermal-mechanical coupling and tool wear[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(11):4645-4659. [58] 王志刚, 何宁, 武凯, 等. 薄壁零件加工变形分析及控制方案[J]. 中国机械工程, 2002, 13(2):30-33. WANG Z G, HE N, WU K. Analysis and control approach for machining deflection of thin-walled work-piece[J]. China Mechanical Engineering, 2002, 13(2):30-33(in Chinese). [59] 万敏. 薄壁件周铣加工过程中表面静态误差预测关键技术研究[D]. 西安:西北工业大学, 2005:4-45. WAN M. Numerical prediction of static form errors in the peripheral milling of thin-walled workpiece[D]. Xi'an:Northwestern Polytechnical University, 2005:4-45(in Chinese). [60] 康永刚, 王仲奇, 姜澄宇. 一种快速有效的薄壁件加工表面误差预测算法[J]. 航空学报, 2007, 28(5):1262-1267. KANG Y G, WANG Z Q, JIANG C Y. An efficient algorithm for calculations of surface errors in peripheral milling[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1262-1267(in Chinese). [61] WANG L Y, HUANG H H, WEST R W, et al. A model of deformation of thin-wall surface parts during milling machining process[J]. Journal of Central South University, 2018, 25(5):1107-1115. [62] 赵欣, 欧剑, 李跃. 薄壁叶片加工变形模型预测与误差补偿[J]. 制造业自动化, 2014, 36(13):36-40. ZHAO X, OU J, LI Y. The thin blade processing deformation prediction model and error compensation[J]. Manufacturing Automation, 2014, 36(13):36-40(in Chinese). [63] 黄泽华, 李建勇, 樊文刚, 等. 复杂曲面薄壁叶片点铣加工弹性变形预测[J]. 西安交通大学学报, 2012, 46(5):67-72. HUANG Z H, LI J Y, FAN W G, et al. Deformation prediction of thin-walled vane with complex surface in ball end milling[J]. Journal of Xi'an Jiaotong University, 2012, 46(5):67-72(in Chinese). [64] SCHULZ H, BIMSCHAS K. Optimization of precision machining by simulation of the cutting process[J]. CIRP Annals, 1993, 42(1):55-58. [65] RATCHEV S, LIU S, HUANG W, et al. Milling error prediction and compensation in machining of low-rigidity parts[J]. International Journal of Machine Tools and Manufacture, 2004, 44(15):1629-1641. [66] TANG A J, LIU Z Q. Experiments and simulation of elastic-plastic deformation in thin wall part milling[J]. Advanced Materials Research, 2011, 314-316:482-486. [67] 屈力刚, 张林栋, 刘洪侠. 基于UKF薄壁件加工变形预测技术研究[J]. 锻压装备与制造技术, 2020, 55(1):91-95. QU L G, ZHANG L D, LIU H X. Research on prediction technology of processing deformation for thin-walled parts based on UKF[J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(1):91-95(in Chinese). [68] LIU G. Study on deformation of titanium thin-walled part in milling process[J]. Journal of Materials Processing Technology, 2009, 209(6):2788-2793. [69] CHENG Y N, ZUO D G, WU M Y, et al. Study on simulation of machining deformation and experiments for thin-walled parts of titanium alloy[J]. International Journal of Control and Automation, 2015, 8(1):401-410. [70] HUANG W W, ZHANG Y, ZHANG X Q, et al. Wall thickness error prediction and compensation in end milling of thin-plate parts[J]. Precision Engineering, 2020, 66:550-563. [71] 王庆霞, 胡晓伟, 庞静珠, 等. 基于切削力实时测量的弱刚性件加工变形控制[J]. 仪器仪表学报, 2019, 40(2):223-232. WANG Q X, HU X W, PANG J Z, et al. Deformation control in weak rigidity workpiece milling based on real-time cutting force measuring[J]. Chinese Journal of Scientific Instrument, 2019, 40(2):223-232(in Chinese). [72] 白万金. 航空薄壁件精密铣削加工变形的预测理论及方法研究[D]. 杭州:浙江大学, 2009:5-114. BAI W J. Study on deformation prediction theory and methods of the aerospace thin-walled components during precision milling process[D]. Hangzhou:Zhejiang University, 2009:5-114(in Chinese). [73] 罗宇. 大型薄壁件加工变形预测及其影响因素研究[D]. 哈尔滨:哈尔滨工业大学, 2017:57-63. LUO Y. Machining deformation prediction and research of influence factors for large thin-walled workpiece[D]. Harbin:Harbin Institute of Technology, 2017:57-63(in Chinese). [74] HUANG X M, SUN J, LI J F. Finite element simulation and experimental investigation on the residual stress-related monolithic component deformation[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77(5):1035-1041. [75] 杨吟飞, 张峥, 李亮, 等. 7085铝合金残余应力及加工变形的数值仿真与试验[J]. 航空学报, 2014, 35(2):574-581. YANG Y F, ZHANG Z, LI L, et al. Numerical simulation and test of bulk residual stress and machining distortion in aluminum alloy 7085[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):574-581(in Chinese). [76] YOSHIHARA N, HINO Y. Removal technique of residual stress in 7075 aluminum alloy, residual stress III:Science and technology[M]. Amsterdam:Elsevier Science Publishers, 1992:1140-1145. [77] WANG Z J, CHEN W Y, ZHANG Y D, et al. Study on the machining distortion of thin-walled part caused by redistribution of residual stress[J]. Chinese Journal of Aeronautics, 2005, 18(2):175-179. [78] 孙杰, 柯映林. 残余应力对航空整体结构件加工变形的影响分析[J]. 机械工程学报, 2005, 41(2):117-122. SUN J, KE Y L. Study on machining distortion of unitization airframe due to residual stress[J]. Journal of Mechanical Engineering, 2005, 41(2):117-122(in Chinese). [79] SALEEM W, IJAZ H, ZAIN-UL-ABDEIN M, et al. Studying control strategies for dimensional precision in aerospace parts machining[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(1):39-47. [80] ROBINSON J S, TANNER D A, TRUMAN C E, et al. Measurement and prediction of machining induced redistribution of residual stress in the aluminium alloy 7449[J]. Experimental Mechanics, 2011, 51(6):981-993. [81] JAYANTI S, REN D, ERICKSON E, et al. Predictive modeling for tool deflection and part distortion of large machined components[J]. Procedia CIRP, 2013, 12:37-42. [82] 王立涛, 柯映林, 黄志刚, 等. 航空结构件铣削残余应力分布规律的研究[J]. 航空学报, 2003, 24(3):286-288. WANG L T, KE Y L, HUANG Z G, et al. Study on residual stress produced in milling of aeronautic structure[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3):286-288(in Chinese). [83] BI Y B, DONG H Y, CHENG Q L, et al. Distortion prediction of aerospace monolithic components due to milling process[J]. Key Engineering Materials, 2008, 392-394:841-847. [84] 张以都, 张洪伟. 航空整体结构件加工变形有限元数值仿真[J]. 北京航空航天大学学报, 2009, 35(2):188-192. ZHANG Y D, ZHANG H W. Finite element simulation of machining deformation for aeronautical monolithic component[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2):188-192(in Chinese). [85] 廖凯, 张萧笛, 车兴飞, 等. 铝合金薄壁件加工变形的力学模型构建与分析[J]. 哈尔滨工业大学学报, 2018, 50(5):166-172. LIAO K, ZHANG X D, CHE X F, et al. Construction and analysis of mechanic model of deformation for Al alloy thin-walled component[J]. Journal of Harbin Institute of Technology, 2018, 50(5):166-172(in Chinese). [86] 姬伟. 薄壁件铣削加工误差预测与快速铣削仿真平台的开发[D]. 南昌:南昌航空大学, 2012:3-44. JI W. Study on error prediction for thin-walled workpiece milling process and developing technology of fast milling simulating platform[D]. Nanchang:Nanchang Hangkong University, 2012:3-44(in Chinese). [87] SIEBENALER S P, MELKOTE S N. Prediction of workpiece deformation in a fixture system using the finite element method[J]. International Journal of Machine Tools and Manufacture, 2006, 46(1):51-58. [88] DENG H Y, MELKOTE S N. Determination of minimum clamping forces for dynamically stable fixturing[J]. International Journal of Machine Tools and Manufacture, 2006, 46(7-8):847-857. [89] WAN X J, ZHANG Y, HUANG X D. Investigation of influence of fixture layout on dynamic response of thin-wall multi-framed work-piece in machining[J]. International Journal of Machine Tools and Manufacture, 2013, 75:87-99. [90] FEI J X, LIN B, XIAO J L, et al. Investigation of moving fixture on deformation suppression during milling process of thin-walled structures[J]. Journal of Manufacturing Processes, 2018, 32:403-411. [91] 董辉跃, 柯映林. 铣削加工中薄壁件装夹方案优选的有限元模拟[J]. 浙江大学学报(工学版), 2004, 38(1):17-21. DONG H Y, KE Y L. Finite element simulation for optimal clamping scheme of thin-walled workpiece in milling process[J]. Journal of Zhejiang University (Engineering Science), 2004, 38(1):17-21(in Chinese). [92] 倪丽君. 计算机辅助夹具设计中的装夹优化技术研究[D]. 南京:南京航空航天大学, 2007:4-66. NI L J. Research on design optimization technology in computer aided fixture design[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007:4-66(in Chinese). [93] 路冬. 航空整体结构件加工变形预测及装夹布局优化[D]. 济南:山东大学, 2007:13-117. LU D. Deformation prediction and fixture layout optimization of aerospace monolithic components[D]. Jinan:Shandong University, 2007:13-117(in Chinese). [94] 张婷. 航空薄壁件装夹布局优化研究[D]. 南昌:南昌航空大学, 2017:3-68. ZHANG T. Study of the optimal clamping scheme of aerospace thin-walled parts[D]. Nanchang:Nanchang Hangkong University, 2017:3-68(in Chinese). [95] 于金, 高彦梁. 多点柔性工装装夹布局优化研究[J]. 制造技术与机床, 2016(2):124-129. YU J, GAO Y L. Research on clamping distribution optimization of multi-point flexible tooling system[J]. Manufacturing Technology & Machine Tool, 2016(2):124-129(in Chinese). [96] 贺旭东, 明伟伟, 郭国强, 等. 走刀路径对多型腔薄壁件加工变形的影响[J]. 机械设计与制造, 2019(3):106-109. HE X D, MING W W, GUO G Q, et al. Influence of tool path on thin-wall parts' deformation[J]. Machinery Design & Manufacture, 2019(3):106-109(in Chinese). [97] 王立涛. 关于航空框类结构件铣削加工残余应力和变形机理的研究[D]. 杭州:浙江大学, 2003:17-64. WANG L T. Study on residual stresses and distortion theory of aeronautica frame structure in the milling[D]. Hangzhou:Zhejiang University, 2003:17-64(in Chinese). [98] 孙国智, 王怀明, 郝敬显, 等. 复杂薄壁结构件加工变形控制工艺分析[J]. 工具技术, 2015, 49(4):46-49. SUN G Z, WANG H M, HAO J X, et al. Analysis on deformation control machining process of complex thin-wall structure[J]. Tool Engineering, 2015, 49(4):46-49(in Chinese). [99] 郭魂, 左敦稳, 刘远伟, 等. 航空腔型薄壁件铣削变形的预测[J]. 吉林大学学报(工学版), 2008, 38(1):84-88. GUO H, ZUO D W, LIU Y W, et al. Prediction of milling distortion for aero-thin-walled components[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(1):84-88(in Chinese). [100] 王光宇, 吴运新, 闫鹏飞, 等. 航空铝合金薄壁件铣削加工变形的预测模型[J]. 中南大学学报(自然科学版), 2012, 43(5):1696-1702. WANG G Y, WU Y X, YAN P F, et al. Prediction model for machining deformation of aeronautical aluminum alloy thin-walled workpiece[J]. Journal of Central South University (Science and Technology), 2012, 43(5):1696-1702(in Chinese). [101] HUANG N D, BI Q Z, WANG Y H, et al. 5-Axis adaptive flank milling of flexible thin-walled parts based on the on-machine measurement[J]. International Journal of Machine Tools and Manufacture, 2014, 84:1-8. [102] LI Z L, ZHU L M. Compensation of deformation errors in five-axis flank milling of thin-walled parts via tool path optimization[J]. Precision Engineering, 2019, 55:77-87. [103] 吴红兵, 柯映林, 刘刚, 等. 航空框类整体结构件铣削加工变形研究[J]. 浙江大学学报(工学版), 2009, 43(3):546-550. WU H B, KE Y L, LIU G, et al. Study on milling deformation of aerospace frame monolithic components[J]. Journal of Zhejiang University (Engineering Science), 2009, 43(3):546-550(in Chinese). [104] 柯烈强. 航空框类结构件铣削加工残余应力抑制策略研究[D]. 芜湖:安徽工程大学, 2010:5-74. KE L Q. Research on control residual stresses mannel of aeronautic frame structure in the milling[D]. Wuhu:Anhui Polytechnic University, 2010:5-74(in Chinese). [105] WANG J, IBARAKI S, MATSUBARA A, et al. FEM-based simulation for workpiece deformation in thin-wall milling[J]. International Journal of Automation Technology, 2015, 9(2):122-128. [106] SRIDHAR G, BABU P R. Cutting parameter optimization for minimizing machining distortion of thin wall thin floor avionic components using Taguchi technique[J]. International Journal of Mechanical Engineering and Technology, 2013, 4(4):71-78. [107] LI B Z, JIANG X H, YANG J G, et al. Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part[J]. Journal of Materials Processing Technology, 2015, 216:223-233. [108] XUE L F, CHEN W F, FENG T, et al. Synchronous optimization of clamping force and cutting parameters for thin-walled parts[J]. Advanced Materials Research, 2014, 900:623-626. [109] 胡权威, 乔立红, 张洪伟. 薄壁结构件铣削参数有限元正交优势分析及优化[J]. 机械工程学报, 2013, 49(21):176-184. HU Q W, QIAO L H, ZHANG H W. Optimization of thin-walled part milling parameters based on finite element and orthogonal dominance analysis[J]. Journal of Mechanical Engineering, 2013, 49(21):176-184(in Chinese). [110] 薛迪. 大型回转体薄壁件加工变形仿真及切削参数优化研究[D]. 长春:吉林大学, 2018:4-66. XUE D. Simulation of machining deformation and optimization of cutting parameters research for large-scale rotary thin-walled parts[D]. Changchun:Jilin University, 2018:4-66(in Chinese). [111] 丛靖梅, 莫蓉, 吴宝海, 等. 薄壁件残余应力变形仿真预测与切削参数优化[J]. 机械科学与技术, 2019, 38(2):205-210. CONG J M, MO R, WU B H, et al. Prediction of deformation induced by residual stress in milling of thin-walled part and optimization of cutting parameters[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(2):205-210(in Chinese). [112] OBARA H, WATANABE T, OHSUMI T, et al. A method to machine three-dimensional thin parts[M]//Initiatives of precision engineering at the beginning of a millennium. Boston:Kluwer Academic Publishers;2001:87-91. [113] 贾广杰. 薄壁壳体石蜡填充高速加工法[J]. 新技术新工艺, 2009(3):4-6. JIA G J. High speed processing method of paraffin filling for thin-walled workpiece[J]. New Technology & New Process, 2009(3):4-6(in Chinese). [114] 于金, 高彦梁, 朱秀峰. 辅助支撑对航空接头薄壁件加工变形的控制[J]. 组合机床与自动化加工技术, 2015(10):138-140. YU J, GAO Y L, ZHU X F. Auxiliary support for the control of machining deformation of an aviation joint thin-walled parts[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(10):138-140(in Chinese). [115] 章绍昆, 毕庆贞, 王宇晗. 镜像铣削加工奇异区域刀具路径优化[J]. 航空学报, 2021, 42(10):424951. ZHANG S K, BI Q Z, WANG Y H. Toolpath optimization for mirror milling in singular area[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):424951(in Chinese). [116] 鲍岩. 面向飞机蒙皮制造的薄板镜像铣削工艺基础[D]. 大连:大连理工大学, 2018:24-27. BAO Y. Foundation of mirror milling technology of sheet for aircraft skin manufacturing[D]. Dalian:Dalian University of Technology, 2018:24-27(in Chinese). [117] 肖聚亮, 姚永胜, 黄田, 等. 用于镜像加工的刚柔性多点随动支撑头:ZL104668989[P]. 2016-09-07. XIAO J L, YAO Y S, HUANG T, et al. Rigid flexible multi-point follow up support head for mirroring:ZL104668989[P]. 2016-09-07(in Chinese). [118] 肖聚亮, 姚永胜, 黄田, 等. 用于薄壁件栅格加工的带刚柔支撑的吸附支撑头:ZL104690577B[P]. 2017-01-18. XIAO J L, YAO Y S, HUANG T, et al. Adsorption support head with rigid and flexible support for grating processing of thin wall parts:ZL104668989[P]. 2017-01-18(in Chinese). [119] 王皓, 赵勇, 陈根良, 等. 用于大型薄壁构件铣削的并联转动-平动解耦加工装备:ZL104001974B[P]. 2016-04-27. WANG H, ZHAO Y, CHEN G L, et al. Parallel transfer-translational decoupling machining equipment for milling large thin-walled parts:ZL104001974B[P]. 2016-04-27(in Chinese). [120] 郝金明, 赵勇, 王皓, 等. 薄壁构件镜像加工支撑机构综合刚度的分析与优化[J]. 机械设计与研究, 2015, 31(2):155-159, 163. HAO J M, ZHAO Y, WANG H, et al. Synthetical stiffness analysis and optimization of mirror support mechanism for thin-walled structures[J]. Machine Design & Research, 2015, 31(2):155-159, 163(in Chinese). [121] 李迎光, 郝小忠, 周鑫, 等. 飞机蒙皮镜像铣削方法及装备:ZL104400086B[P]. 2016-07-06. LI Y G, HAO X Z, ZHOU X, et al. Method and equipment for mirror milling of aircraft skin:ZL104400086B[P]. 2016-07-06(in Chinese). [122] 刘少伟, 李迎光, 郝小忠, 等. 基于特征的蒙皮镜像铣加工残区刀轨优化方法[J]. 航空学报, 2016, 37(7):2295-2302. LIU S W, LI Y G, HAO X Z, et al. Feature-based uncut region tool path optimization method for skin parts machined by mirror milling system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2295-2302(in Chinese). [123] SEGUY S, DESSEIN G, ARNAUD L. Surface roughness variation of thin wall milling, related to modal interactions[J]. International Journal of Machine Tools and Manufacture, 2008, 48(3-4):261-274. [124] LIU C Q, LI Y G, SHEN W M. A real time machining error compensation method based on dynamic features for cutting force induced elastic deformation in flank milling[J]. Machining Science and Technology, 2018, 22(5):766-786. [125] 张攀, 陈蔚芳. 薄壁件加工变形预测及主动补偿方法[J]. 现代制造工程, 2008(3):70-72, 46. ZHANG P, CHEN W F. Deformation prediction in machining of thin-walled parts and an active method of compensation[J]. Modern Manufacturing Engineering, 2008(3):70-72, 46(in Chinese). [126] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1):1-18. TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1):1-18(in Chinese). [127] CHRISTIAND, KISWANTO G. Digital twin approach for tool wear monitoring of micro-milling[J]. Procedia CIRP, 2020, 93:1532-1537. [128] LUO W C, HU T L, YE Y X, et al. A hybrid predictive maintenance approach for CNC machine tool driven by digital twin[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65:101974. [129] QIAO Q Z, WANG J J, YE L K, et al. Digital twin for machining tool condition prediction[J]. Procedia CIRP, 2019, 81(C):1388-1393. |
[1] | 田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 429134-429134. |
[2] | 黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024, 45(5): 529693-529693. |
[3] | 马廉洁, 杜文豪, 赵镇, 邱喆. 刀具偏心跳动下侧铣硬脆材料的瞬时铣削力模型[J]. 航空学报, 2024, 45(4): 428925-428925. |
[4] | 董立卓, 张思琪, 张钊, 吴宝海. 机理⁃数据混合驱动的叶片加工变形预测方法[J]. 航空学报, 2024, 45(13): 629037-629037. |
[5] | 郑志阳, 张阳, 张钊, 吴宝海, 张莹. 基于GA⁃SVR的薄壁叶片辅助支撑布局优化方法[J]. 航空学报, 2023, 44(4): 426805-426805. |
[6] | 王维民, 户东方. 旋转叶片动应力非接触测量方法研究综述[J]. 航空学报, 2023, 44(22): 28516-028516. |
[7] | 何佳琦, 吴伟达, 罗阳军. 基于P-CS模型与数字孪生的星载天线反射器形面鲁棒性控制方法[J]. 航空学报, 2023, 44(19): 328343-328343. |
[8] | 刘宗昊, 王海同, 杨宇伟, 蔡永林. 考虑材料去除效应的五轴铣削变形分析[J]. 航空学报, 2023, 44(13): 427977-427977. |
[9] | 郭丞皓, 于劲松, 宋悦, 尹琦, 李佳璇. 基于数字孪生的飞机起落架健康管理技术[J]. 航空学报, 2023, 44(11): 227629-227629. |
[10] | 王芳丽, 刘凯, 潘微, 童明波. 民机结构绿色维修技术应用与发展[J]. 航空学报, 2023, 44(11): 25851-025851. |
[11] | 路来骁, 徐长官, 刘建华, 秦美镇, 吕英波, 阎玉芹. 初始应力状态对薄壁件双侧滚压影响规律[J]. 航空学报, 2023, 44(10): 427415-427415. |
[12] | 曹明, 王鹏, 左洪福, 曾海军, 孙见忠, 杨卫东, 魏芳, 陈雪峰. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ: 地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报, 2022, 43(9): 625574-625574. |
[13] | 董雷霆, 周轩, 赵福斌, 贺双新, 卢志远, 冯建民. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 23981-023981. |
[14] | 孟松鹤, 叶雨玫, 杨强, 黄震, 解维华. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9): 23615-023615. |
[15] | 隋少春, 许艾明, 黎小华, 刘顺涛, 黄伟. 面向航空智能制造的DT与AI融合应用[J]. 航空学报, 2020, 41(7): 624173-624173. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 627
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1737
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学