收稿日期:
2021-05-24
修回日期:
2021-06-30
接受日期:
2021-07-21
出版日期:
2023-06-15
发布日期:
2021-08-03
通讯作者:
童明波
E-mail:tongw@nuaa.edu.cn
基金资助:
Fangli WANG1,2, Kai LIU2, Wei PAN2, Mingbo TONG2()
Received:
2021-05-24
Revised:
2021-06-30
Accepted:
2021-07-21
Online:
2023-06-15
Published:
2021-08-03
Contact:
Mingbo TONG
E-mail:tongw@nuaa.edu.cn
Supported by:
摘要:
绿色航空的飞速发展极大地推进了民机结构维修新材料、新工艺、新评估技术与数字化、网络化和智能化的应用及深度融合,加速了修理产业低碳、生态、循环、装备转型升级的可持续发展态势。阐述了绿色民机结构维修的概念及其内涵,系统介绍了新材料、先进涂层以及绿色清洗手段,先进无损检测及评估技术,区块链、5G+AR远程维修、大数据及数字孪生技术,新材料先进修理工艺、CAD修理技术及远程专家系统、智能维修技术等在维修工程中的发展与应用,提出了实施民机结构绿色维修的方法途径,为绿色航空的可持续发展提供技术参考。
中图分类号:
王芳丽, 刘凯, 潘微, 童明波. 民机结构绿色维修技术应用与发展[J]. 航空学报, 2023, 44(11): 25851.
Fangli WANG, Kai LIU, Wei PAN, Mingbo TONG. Application and development of green structure maintenance for civil aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 25851.
表 2
传统无损检测方法绿色发展方向
方法 | 适用范围及特点 | 绿色发展方向 |
---|---|---|
目视 | 肉眼可见或辅助工具可见表面损伤;直观、快速,可靠性依赖于检验者的能力和经验 | ① 发展仪器例如视频内窥、孔探仪;② 提高保证检出概率;③ 进行目视培训和资格认证 |
渗透 | 只能检测非多孔性材料、只能检测表面开口缺陷、污染;直观、灵敏、操作简单,材料适用范围广 | 环境友好型的渗透媒介 |
射线 | 灵敏度高并能在胶片上提供一个永久的记录。但辐射有害, 检测裂纹的能力受射线束方向的影响;直观、可靠、便于保存 | ① 计算机射线照相技术(CR);② 直读式射线照相技术(DR);③ 射线实时成像检测技术 |
磁粉 | 只适用铁磁性材料、表面、近表面不连续性的检测;方便、可靠、灵敏、直观 | 漏磁检测(MFL)的数字化和图像化 |
涡流 | 导电材料表面、近表面裂纹;工艺简单,检测速度快,不需耦合剂,无污染 | ① 脉冲涡流;② 涡流阵列;③ 涡流C扫描成像和磁光成像(MOI);④ 涡流全息 |
超声波 | 仅适用金属和某些非金属的表层和亚表层,不适用致密性不好的复合材料; 灵敏度高、穿透力强、材料适应面广、检测速度快、成本低、对人体无害 | ① 全聚焦相控阵超声检测;② 空气耦合超声检测;③ 激光超声检测;④ 衍射时差法(TOFD)超声检测;⑤ 水浸超声自动化检测 |
声发射 | 被动检测,实时动态监控检测;与缺陷所处位置和方向无关、灵敏度高、整体性、费用低 | ① 多通道声发射系统;② 数字化和智能化 |
1 | LEE Ann Shay. 2020年全球各地MRO市场预测[J]. 航空维修与工程, 2020(1): 20. |
LEE A S. MRO regional projections for 2020[J]. Aviation Maintenance & Engineering, 2020(1): 20 (in Chinese). | |
2 | 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2): 317-322. |
MA L M, ZHANG J Z, YUE G Q, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 317-322 (in Chinese). | |
3 | 徐进军, 康唯, 都昌兵. 航空航天铝锂合金及其成形技术的研究现状和发展趋势[J]. 兵器材料科学与工程, 2017, 40(3): 132-137. |
XU J J, KANG W, DU C B. Research status and development trends of Al-Li alloys for aeronautic and astronautic industry[J]. Ordnance Material Science and Engineering, 2017, 40(3): 132-137 (in Chinese). | |
4 | 韩天时, 刘鑫. 钛合金焊接在民用飞机维修中的应用[J]. 热加工工艺, 2018, 47(3): 199-202. |
HAN T S, LIU X. Application of titanium alloy welding in civil aircraft maintenance[J]. Hot Working Technology, 2018, 47(3): 199-202 (in Chinese). | |
5 | 杨富强, 熊慧, 任柏峰, 等. 先进铝锂合金的发展及应用[J]. 世界有色金属, 2018(22): 1-5. |
YANG F Q, XIONG H, REN B F, et al. Development and application of advanced aluminum-lithium alloy[J]. World Nonferrous Metals, 2018(22): 1-5 (in Chinese). | |
6 | 李亚江, 刘坤. 钛合金在航空领域的应用及其先进连接技术[J]. 航空制造技术, 2015, 58(16): 34-37. |
LI Y J, LIU K. Application and advanced bonding technology of titanium alloy in aviation industry[J]. Aeronautical Manufacturing Technology, 2015, 58(16): 34-37 (in Chinese). | |
7 | 周如东. 飞机蒙皮表面处理和涂层选择及涂装工艺[J]. 涂层与防护, 2018, 39(6): 51-54, 62. |
ZHOU R D. Surface treatment and coating process of aircraft skin[J]. Coating and Protection, 2018, 39(6): 51-54, 62 (in Chinese). | |
8 | 刘芳, 戚晓专, 王锋. 飞机退漆、洗机废水处理试验研究[J]. 给水排水, 2004, 30(4): 56-58. |
LIU F, QI X Z, WANG F. Experimental research on aircraft washing and de-painting wastewater treatment[J]. Water & Wastewater Engineering, 2004, 30(4): 56-58 (in Chinese). | |
9 | 于国玲, 张继芳, 王学克, 等. 新型高固体分涂料的最新研究进展[J]. 弹性体, 2020, 30(2): 73-76. |
YU G L, ZHANG J F, WANG X K, et al. Development of new high solid coating[J]. China Elastomerics, 2020, 30(2): 73-76 (in Chinese). | |
10 | ATHAWALE V D, NIMBALKAR R V. Waterborne coatings based on renewable oil resources: An overview[J]. Journal of the American Oil Chemists’ Society, 2011, 88(2): 159-185. |
11 | 郝江华, 周雁文, 魏江涛. 浅谈电镀锌-镍合金代替氰化镀镉工艺的可行性[J]. 科技创新与应用, 2016(30): 123. |
HAO J H, ZHOU Y W, WEI J T. Discussion on the feasibility of replacing cyanide cadmium plating process with zinc-nickel alloy electroplating[J]. Technology Innovation and Application, 2016(30): 123 (in Chinese). | |
12 | 陈江,刘玉兰. 激光再制造技术工程化应用. 绿色再制造与绿色维修[C]∥第二届全国装备再制造工程学术会议暨首届青年再制造工程学术论坛论文集. 2006:49-54. |
CHEN J, LIU Y L. Engineering application of laser remanufacturing technology. Green remanufacturing and green maintenance[C]∥Proceedings of the second national Equipment Remanufacturing Engineering Academic Conference and the first youth Remanufacturing Engineering Academic Forum. 2006: 49-54 (in Chinese). | |
13 | 李涛, 韦利军, 王小龙. 飞机新型环保防腐蚀清洗剂的研制[J]. 科技创新与应用, 2015(20): 37. |
LI T, WEI L J, WANG X L. Development of new environmental protection and anti-corrosion cleaning agent for aircraft[J]. Technology Innovation and Application, 2015(20): 37 (in Chinese). | |
14 | 魏铭, 朱焱. 无磷水基金属清洗剂的研制[J]. 材料保护, 2007, 40(4): 30-31, 38, 74. |
WEI M, ZHU Y. Preparation of phosphorus-free water-based cleaning agent for metals[J]. Materials Protection, 2007, 40(4): 30-31, 38, 74 (in Chinese). | |
15 | 张克文. 长输管道超声波在线检测技术探讨[J]. 石油化工安全环保技术, 2010, 26(3): 27-30, 68. |
ZHANG K W. Discussion on ultrasonic on-line inspection technology for long distance pipeline[J]. Petrochemical Safety and Environmental Protection Technology, 2010, 26(3): 27-30, 68 (in Chinese). | |
16 | IMIELIŃSKA K, CASTAINGS M, WOJTYRA R, et al. Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: Glass, carbon and Kevlar/epoxy composites[J]. Journal of Materials Processing Technology, 2004, 157-158: 513-522. |
17 | PETERS J J, BARNARD D J, HSU D K. Development of a fieldable air‐coupled ultrasonic inspection system[J]. AIP Conference Proceedings, 2004, 700(1): 1368-1375. |
18 | HILLGER W, MEIER R, HENRICH R. Inspection of CFRP components by ultrasonic imaging with air-coupling[J]. Insight - Non-Destructive Testing and Condition Monitoring, 2004, 46(3): 147-150. |
19 | 耿荣生. 迅速发展的中国无损检测事业[J]. 无损检测, 2008, 30(2): 69-72, 76. |
GENG R S. On the rapidly developing nondestructive testing technology in China[J]. Nondestructive Testing Technologying, 2008, 30(2): 69-72, 76 (in Chinese). | |
20 | TRAN T. The feasibility of using X-Ray induced acoustic computed tomography for non-destructive testing of aircraft structural[D].Norman: The University of Oklahoma, 2020. |
21 | OSPENNIKOVA O G, KOSARINA E I, KRUPNINA O A. X-ray nondestructive testing as an essential tool during technology design and development of modern aircraft materials[J]. Inorganic Materials: Applied Research, 2019, 10(6): 1510-1516. |
22 | 董祥明,刘德峰,刘伟,等. 太赫兹无损检测技术[C]∥第十六届中国航空测控技术年会,2019:299-302,327. |
DONG X M, LIU D F, LIU W, et al. Terahertz nondestructive testing technology[C]∥Proceedings of the 16th China Annual Conference on Aviation Measurement and Control Technology, 2019:299-302,327 (in Chinese). | |
23 | WAN M, WANG H T, JIANG Z F, et al. The research and application of ESPI technology on honeycomb structuralmaterials[J]. Journal of Nanchang Hangkong University:Natural Sciences,2007, 21:249-252. |
24 | WANG Y L. Electonic speckle pattern interferometer and laser shearography thchnique[J]. Nondestructive Testing, 2003, 25(2):96-98. |
25 | XIAO Y S, ZENG Q L, MA T J. Development and application of new non-destructive laser speckle instrument for tiretesting[J]. Non-destructive Inspection, 2012, 36(1): 19-22. |
26 | JIAN Z. Studies on filed-applicable shearography NDT of airplane composites[J]. Nondestructive Testing, 2007, 29(7): 378-381. |
27 | PANTANO A, CERNIGLIA D. Simulation of laser-generated ultrasonic wave propagation in solid media and air with application to NDE[J]. Applied Physics A, 2010, 98(2): 327-336. |
28 | MIRKHANI K, CHAGGARES C, MASTERSON C, et al. Optimal design of EMAT transmitters[J]. NDT & E International, 2004, 37(3): 181-193. |
29 | 魏东, 周正干. 固体中脉冲超声波传播的有限差分模拟[J]. 航空学报, 2010, 31(2): 388-392. |
WEI D, ZHOU Z G. Finite difference simulation of pulsed ultrasonic propagation in solids[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 388-392 (in Chinese). | |
30 | 徐圆飞, 徐春广, 肖定国, 等. 超声换能器脉冲波声场数值计算与测试[J]. 航空学报, 2008, 29(6): 1705-1709. |
XU Y F, XU C G, XIAO D G, et al. Computation and measurement for pulse sound field of ultrasonic transducer[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1705-1709 (in Chinese). | |
31 | GORANSON U G. Fatigue issues in aircraft maintenance and repairs[J]. International Journal of Fatigue, 1997, 19(93): 3-21. |
32 | Paul Seidenman, Spanovich David J., 蓝楠. 维修业各方积极推动数字化维修记录的发展[J]. 航空维修与工程, 2016(10): 18-19. |
SEIDENMAN P, SPANOVICH D J, LAN N. Why airlines, aftermarket struggle with digital record-keeping[J]. Aviation Maintenance & Engineering, 2016(10): 18-19 (in Chinese). | |
33 | ALESHI A. Secure aircraft maintenance records using blockchain (SAMR)[D]. Daytona Beach: Embry-Riddle Aeronautical University, 2018. |
34 | RAJKOV D. Blockchain for aircraft spare part management: Evaluating the robustness of the maintenance, repair and overhaul business model[D]. Delft :Delft University of Technology,2018. |
35 | 王宁, 王煜, 张志雄. 区块链技术航空应用与发展展望[J]. 航空科学技术, 2020, 31(6): 7-13. |
WANG N, WANG Y, ZHANG Z X. Application and development of blockchain technology in aviation[J]. Aeronautical Science & Technology, 2020, 31(6): 7-13 (in Chinese). | |
36 | 韦 译. 5G时代虚拟现实和增强现实的发展[J]. 广西通信技术, 2019(1): 1-4, 14. |
WEI Y. The development of VR and AR technology in 5G era[J]. Guangxi Communication Technology, 2019(1): 1-4, 14 (in Chinese). | |
37 | 郭子豪, 邢诗怡, 王宇, 等. 基于AR技术的飞机维修可视化远程协助系统研究[J]. 自动化应用, 2019(10): 129-130, 133. |
GUO Z H, XING S Y, WANG Y, et al. Research on aircraft maintenance visualization remote assistance system based on AR technology[J]. Automation Application, 2019(10): 129-130, 133 (in Chinese). | |
38 | VILJAKAINEN T.Adoption of augmented reality solutions in field engineering and maintenance-Drivers and barriers for organizations[D]. Helsinki:Arcada University of Applied Sciences,2020. |
39 | 马静华, 刘晓庆, 刘鲁秦. 大数据将怎样改变人类的未来[J]. 大飞机, 2017(11): 12-16. |
MA J H, LIU X Q, LIU L Q. How will big data change the future of mankind?[J]. Jetliner, 2017(11): 12-16 (in Chinese). | |
40 | 孔祥芬, 蔡峻青, 张利寒, 等. 大数据在航空系统的研究现状与发展趋势[J]. 航空学报, 2018, 39(12): 022311. |
KONG X F, CAI J Q, ZHANG L H, et al. Research status and development trend of big data in aviation system[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 022311 (in Chinese). | |
41 | 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9): 023615. |
MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 023615 (in Chinese). | |
42 | 赵亮, 高龙, 陶剑. 数字孪生技术在航空产品寿命预测中的应用[J]. 国防科技工业, 2019(5): 42-44. |
ZHAO L, GAO L, TAO J. Application of digital twin technology in life prediction of aviation products[J]. Defence Science & Technology Industry, 2019(5): 42-44 (in Chinese). | |
43 | 朱璞, 李侯君, 陈进文, 等. 紫外光固化复合材料修复铝合金板力学性能研究[C]∥第二十一届全国玻璃钢/复合材料学术年会. 2016: 61-65. |
ZHU P, LI H J, CHEN J W, et al. Study on mechanical properties of aluminum alloy plate repaired by UV curing composite[C]∥ 21st Annual Academic Conference on FRP/CM. 2016: 61-65 (in Chinese). | |
44 | GUTIERREZ D F M. Environmental characterization of VARTM repair technology[D]. West Lafayette: Purdue University, 2012. |
45 | 夏仁波, 苏润, 赵吉宾, 等. 飞机表面制造质量智能检测方法研究[J]. 自动化博览, 2019, 36(5): 38-41. |
XIA R B, SU R, ZHAO J B, et al. Research on intelligent detection method of aircraft surface manufacturing quality[J]. Automation Panorama, 2019, 36(5): 38-41 (in Chinese). | |
46 | 俞凯, 徐志兵, 郝顺义. 新型飞机的故障诊断维修体系研究[J]. 现代电子技术, 2013, 36(23): 9-12, 15. |
YU K, XU Z B, HAO S Y. Research on fault diagnosis and maintenance system for new aircraft[J]. Modern Electronics Technique, 2013, 36(23): 9-12, 15 (in Chinese). | |
47 | 贾立山, 刘喆, 孙毅. 基于RMBP神经网络的飞机电气故障智能诊断[J]. 系统仿真学报, 2018, 30(9): 3493-3501, 3513. |
JIA L S, LIU Z, SUN Y. Intelligent diagnosis of aircraft electrical faults based on RMBP neural network[J]. Journal of System Simulation, 2018, 30(9): 3493-3501, 3513 (in Chinese). | |
48 | 张新苗, 余自武, 杨雨绮. 人工智能在波音787上的应用与思考[J]. 工业工程与管理, 2017, 22(6): 169-174. |
ZHANG X M, YU Z W, YANG Y Q. Application and consideration to Boeing 787 influenced by artificial intelligence[J]. Industrial Engineering and Management, 2017, 22(6): 169-174 (in Chinese). | |
49 | 徐忠明. 以“新基建”开创航空维修“新业态”[J]. 航空维修与工程, 2020(6): 15-18. |
XU Z M. Create a new MRO business form with new infrastructure construction[J]. Aviation Maintenance & Engineering, 2020(6): 15-18 (in Chinese). |
[1] | 薛小锋, 赵淼龑, 杜倩宜, 冯蕴雯, 樊俊铃, 焦婷. 基于人员和环境因素定量化的检测可靠性[J]. 航空学报, 2024, 45(6): 228859-228859. |
[2] | 胡明辉, 高金吉, 江志农, 王维民, 邹利民, 周涛, 凡云峰, 王越, 冯家欣, 李晨阳. 航空发动机振动监测与故障诊断技术研究进展[J]. 航空学报, 2024, 45(4): 630194-630194. |
[3] | 黄湛钧, 董鑫, 卢沐宇, 张瑞涛, 闫钊阳, 张安. 基于DRSN与电压幅值分析的航空HVDC系统逆变器故障诊断[J]. 航空学报, 2024, 45(3): 328685-328685. |
[4] | 李天晴, 王维民, 张旭龙, 王树慧, 付振宇. 基于叶尖定时的转子叶片轴向位移辨识方法[J]. 航空学报, 2024, 45(2): 228682-228682. |
[5] | 李晖, 陈银超, 孙绍山, 梁兆鑫, 毛刚, 乔彬, 李永波. 基于联邦图网络的转子系统故障诊断方法[J]. 航空学报, 2024, 45(17): 530611-530611. |
[6] | 胡渊豪, 宋艺博, 刘家辉, 赵孝礼, 邓文翔, 胡健, 姚建勇. 基于注意力卷积胶囊网络的电液比例伺服阀故障诊断[J]. 航空学报, 2024, 45(15): 630407-630407. |
[7] | 李洁, 黄文新, 蔡一鸣, 王思远, 高宇飞, 蒋雪峰. 基于DFPMM的位置传感器故障诊断与容错控制[J]. 航空学报, 2024, 45(10): 329307-329307. |
[8] | 贾宝惠, 姜番, 王玉鑫, 王杜. 基于民机维修文本数据的故障诊断方法[J]. 航空学报, 2023, 44(5): 326598-326598. |
[9] | 王金瑞, 季珊珊, 张宗振, 初振云, 韩宝坤, 鲍怀谦. 并行稀疏滤波在轴承声信号下的故障诊断[J]. 航空学报, 2023, 44(4): 426887-426887. |
[10] | 杨娟, 牛江昊, 张青松. 循环老化锂离子电池热失控气体原位爆炸极限实验分析[J]. 航空学报, 2023, 44(23): 428529-428529. |
[11] | 陈泽灏, 陈晖, 高玉闪, 张航. 基于模型的液体火箭发动机故障诊断技术回顾与展望[J]. 航空学报, 2023, 44(23): 629016-629016. |
[12] | 于功也, 蔡伟东, 胡明辉, 刘文才, 马波. 故障机理与领域自适应混合驱动的机械故障智能迁移诊断[J]. 航空学报, 2023, 44(2): 426800-426800. |
[13] | 宋凯, 张弛, 晏晨辉, 宁宁, 樊俊铃, 王荣彪. 基于双参数表征的航空发动机轮盘模型辅助涡流检测可靠性[J]. 航空学报, 2023, 44(13): 227866-227866. |
[14] | 郭丞皓, 于劲松, 宋悦, 尹琦, 李佳璇. 基于数字孪生的飞机起落架健康管理技术[J]. 航空学报, 2023, 44(11): 227629-227629. |
[15] | 赵万里, 郭迎清, 徐柯杰, 王灿森, 应豪杰, 陶欣昕. 航空发动机多电分布式控制系统故障诊断与容错关键技术综述[J]. 航空学报, 2023, 44(10): 27519-027519. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学