[1] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:a path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington,D.C.:NASA, 2014. [2] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese). [3] JAMESON A, VASSBERG J. Computational fluid dynamics for aerodynamic design-Its current and future impact[C]//39th Aerospace Sciences Meeting and Exhibit, 2001. [4] 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1):244-254. ZHANG M, LIU T J, MA T L, et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):244-254(in Chinese). [5] RAISSI M, WANG Z, TRIANTAFYLLOU M S, et al. Deep learning of vortex-induced vibrations[J]. Journal of Fluid Mechanics, 2019, 861:119-137. [6] HUANG J, LIU H, CAI W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning[J]. Journal of Fluid Mechanics, 2019, 875, R2. [7] DOWELL E H. Eigenmode analysis in unsteady aerodynamics-reduced-order models[J]. AIAA Journal, 1996, 34(8):1578-1583. [8] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656:5-28. [9] KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814:1-4. [10] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436. [11] XIONG H Y, ALIPANAHI B, LEE L J, et al. The human splicing code reveals new insights into the genetic determinants of disease[J]. Science, 2015, 347(6218):1254806. [12] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5):359-366. [13] CYBENKO G. Approximations by superpositions of a sigmoidal function[J]. Mathematics of Control, Signals and Systems, 1989, 2:183-192. [14] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Massachusetts:The MIT Press, 2016. [15] PARISH E J, DURAISAMY K. A paradigm for data-driven predictive modeling using field inversion and machine learning[J]. Journal of Computational Physics, 2016, 305:758-774. [16] SINGH A P, MEDIDA S, DURAISAMY K. Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils[J]. AIAA Journal, 2017, 55(7):2215-2227. [17] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012. [18] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554. [19] SAINATH T N, MOHAMED A, KINGSBURY B, et al. Deep convolutional neural networks for LVCSR[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013. [20] MIYANAWALA T P, JAIMAN R K. An efficient deep learning technique for the Navier-Stokes equations:Application to unsteady wake flow dynamics[DB/OL]. arXiv preprint:1710.09099,2017. [21] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51:357-377. [22] WANG M, LI H X, CHEN X, et al. Deep learning-based model reduction for distributed parameter systems[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(12):1664-1674. [23] OMATA N, SHIRAYAMA S. A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder[J]. AIP Advances, 2019, 9(1):015006. [24] MOHAN A T, GAITONDE D V. A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks[DB/OL]. arXiv preprint:1804.09269,2018. [25] PAWAR S, RAHMAN S, VADDIREDDY H, et al. A deep learning enabler for nonintrusive reduced order modeling of fluid flows[J]. Physics of Fluids, 2019, 31(8):085101. [26] DENG Z, CHEN Y, LIU Y, et al. Time-resolved turbulent velocity field reconstruction using a long short-term memory (LSTM)-based artificial intelligence framework[J]. Physics of Fluids, 2019, 31(7):075108. [27] FUKAMI K, FUKAGATA K, TAIRA K. Super-resolution reconstruction of turbulent flows with machine learning[J]. Journal of Fluid Mechanics, 2019, 870:106-120. [28] GUO X, LI W, IORIO F. Convolutional neural networks for steady flow approximation[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery And Data Mining, 2016. [29] JIN X, CHENG P, CHEN W L, et al. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[J]. Physics of Fluids, 2018, 30(4):047105. [30] SEKAR V, JIANG Q, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5):057103. [31] MOHAN A, DANIEL D, CHERTKOV M, et al. Compressed convolutional LSTM:An efficient deep learning framework to model high fidelity 3D turbulence[DB/OL]. arXiv preprint:1903.00033,2019. [32] LEE S, YOU D. Data-driven prediction of unsteady flow over a circular cylinder using deep learning[J]. Journal of Fluid Mechanics, 2019, 879:217-254. [33] HAN R K, WANG Y, ZHANG Y, et al. A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network[J]. Physics of Fluids, 2019, 31(12):127101. [34] RüTTGERS M, LEE S, YOU D. Prediction of typhoon tracks using a generative adversarial network with observational and meteorological data[DB/OL]. arXiv preprint:1812.01943,2018. [35] MIYANAWALA T, JAIMAN R K. A novel deep learning method for the predictions of current forces on bluff bodies[C]//ASME 37th International Conference on Ocean, Offshore and Arctic Engineering, 2018. [36] MAO X, JOSHI V, MIYANAWALA T, et al. Data-driven computing with convolutional neural networks for two-phase flows:Application to wave-structure interaction[C]//ASME 37th International Conference on Ocean, Offshore and Arctic Engineering, 2018. [37] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [38] HINTON G, SALAKHUTDINOV R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [39] VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics:the finite volume method[M]. Pearson Education, 2007. [40] 陶文铨. 数值传热学[M]. 西安:西安交通大学出版社, 2001. TAO W Q. Numerical heat transfer[M]. Xi'an:Xi'an Jiaotong University Press, 2001(in Chinese). [41] GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[C]//ICML, 2015. [42] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[DB/OL]. arXiv preprint:1312.6199,2013. [43] RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics:Learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481):1026-1030. [44] RUDY S H, BRUNTON S L, PROCTOR J L, et al. Data-driven discovery of partial differential equations[J]. Science Advances, 2017, 3(4):e1602614. [45] RAISSI M. Deep hidden physics models:Deep learning of nonlinear partial differential equations[J]. The Journal of Machine Learning Research, 2018, 19(1):932-955. [46] BASDEVANT C, DEVILLE M, HALDENWANG P, et al. Spectral and finite difference solutions of Burgers equation[J]. Computers & Fluids, 1986, 14(1):23-41. [47] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51:357-377. [48] LUO S, CUI J, VELLAKAL M, et al. Review and examination of input feature preparation methods and machine learning models for turbulence modeling[DB/OL]. arXiv preprint:2001.05485,2020. [49] YANG M, XIAO Z. Improving the k-ω-γ-Ar transition model by the field inversion and machine learning framework[J]. Physics of Fluids, 2020, 32(6):064101. [50] MAULIK R, SAN O, JACOB J D, et al. Sub-grid scale model classification and blending through deep learning[J]. Journal of Fluid Mechanics, 2019, 870:784-812. [51] ZHU L, ZHANG W W, KOU J, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids, 2019, 31(1):015105. [52] MAULIK R, SAN O, RASHEED A, et al. Subgrid modelling for two-dimensional turbulence using neural networks[J]. Journal of Fluid Mechanics, 2019, 858:122-144. [53] WU J L, XIAO H, PATERSON E. Physics-informed machine learning approach for augmenting turbulence models:A comprehensive framework[J]. Physical Review Fluids, 2018, 3(7):074602. [54] XIE C, WANG J, LI H, et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence[J]. Physics of Fluids, 2019, 31(8):085112. [55] KOU J Q, ZHANG W W. Multi-kernel neural networks for nonlinear unsteady aerodynamic reduced-order modeling[J]. Aerospace Science and Technology, 2017, 67:309-326. [56] 张伟伟, 朱林阳, 刘溢浪, 等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报, 2019, 37(3):444-454. ZHANG W W, ZHU L Y, LIU Y L, et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3):444-454(in Chinese). [57] WANG J X, WU J L, XIAO H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data[J]. Physical Review Fluids, 2017, 2(3):034603. [58] XIAO H, WU J L, WANG J X, et al. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations:A data-driven, physics-informed Bayesian approach[J]. Journal of Computational Physics, 2016, 324:115-136. [59] TI Z, DENG X W, YANG H. Wake modeling of wind turbines using machine learning[J]. Applied Energy, 2020, 257:114025. [60] WANG J X, HUANG J, DUAN L, et al. Prediction of Reynolds stresses in high-Mach-number turbulent boundary layers using physics-informed machine learning[J]. Theoretical and Computational Fluid Dynamics, 2019, 33(1):1-19. [61] WU J, XIAO H, SUN R, et al. Reynolds-averaged Navier-Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned[J]. Journal of Fluid Mechanics, 2019, 869:553-586. [62] WU J L, WANG J X, XIAO H, et al. A priori assessment of prediction confidence for data-driven turbulence modeling[J]. Flow, Turbulence and Combustion, 2017, 99(1):25-46. [63] ZHANG X, WU J, COUTIER-DELGOSHA O, et al. Recent progress in augmenting turbulence models with physics-informed machine learning[J]. Journal of Hydrodynamics, 2019, 31(6):1153-1158. [64] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166. [65] CRUZ M A, THOMPSON R L, SAMPAIO L E, et al. The use of the Reynolds force vector in a physics informed machine learning approach for predictive turbulence modeling[J]. Computers & Fluids, 2019, 192:104258. [66] KAANDORP M L, DWIGHT R P. Data-driven modelling of the Reynolds stress tensor using random forests with invariance[J]. Computers & Fluids, 2020, 202:104497. [67] WEATHERITT J, SANDBERG R. The development of algebraic stress models using a novel evolutionary algorithm[J]. International Journal of Heat and Fluid Flow, 2017, 68:298-318. [68] ZHANG Z, SONG X D, YE S R, et al. Application of deep learning method to Reynolds stress models of channel flow based on reduced-order modeling of DNS data[J]. Journal of Hydrodynamics, 2019, 31(1):58-65. [69] LING J, TEMPLETON J. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier-Stokes uncertainty[J]. Physics of Fluids, 2015, 27(8):085103. [70] MAULIK R, SHARMA H, PATEL S, et al. Accelerating RANS turbulence modeling using potential flow and machine learning[DB/OL]. arXiv preprint:1910.10878,2019. [71] ZHANG Y, SUNG W J, MAVRIS D N. Application of convolutional neural network to predict airfoil lift coefficient[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018. [72] MIYANAWALA T P, JAIMAN R K. An efficient deep learning technique for the navier-stokes equations:application to unsteady wake flow dynamics[DB/OL]. arXiv preprint:1710.09099,2017. [73] WANG Z, XIAO D, FANG F, et al. Model identification of reduced order fluid dynamics systems using deep learning[J]. International Journal for Numerical Methods in Fluids, 2018, 86(4):255-268. [74] LEE S, YOU D. Prediction of laminar vortex shedding over a cylinder using deep learning[DB/OL]. arXiv preprint:1712.07854,2017. [75] 王怡星, 李东风, 陈刚. 一种基于流场特征的气动力深度学习降阶模型[C]//第四届全国非定常空气动力学学术会议论文集, 2018. WANG Y X, LI D F, CHEN G. A deep learning reduced order model of aerodynamics based on flow field characteristics[C]//Proceedings of the 4th National Conference on Unsteady Aerodynamics, 2018(in Chinese). [76] GUO X, LI W, IORIO F. Convolutional neural networks for steady flow approximation[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016:481-490. [77] RIBEIRO M D, REHMAN A, AHMED S, et al. DeepCFD:efficient steady-state laminar flow approximation with deep convolutional neural networks[DB/OL]. arXiv preprint:2004.08826,2020. [78] SHYY W, AONO R, CHIMAKURTHI R K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace, 2010, 46(7):284-327. [79] HAN R K, ZHANG Z, WANG Y, et al. Hybrid deep neural network based prediction method for unsteady flows with moving boundaries[DB/OL]. arXiv preprint:2006.00690, 2020. [80] MATHIEU M, COUPRIE C, LECUN Y. Deep multi-scale video prediction beyond mean square error[DB/OL]. arXiv preprint:1511.05440, 2015. [81] YAO Z, SUNG W J, MAVRIS D N. Application of convolutional neural network to predict airfoil lift coefficient[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018. [82] SALEHIPOUR H, PELTIER W R. Deep learning of mixing by two ‘atoms’ of stratified turbulence[DB/OL]. arXiv preprint:1809.06499, 2018. [83] 李凯, 寇家庆, 张伟伟. 基于深度神经网络的非定常气动力建模[C]//第四届全国非定常空气动力学学术会议论文集, 2018. LI K, KOU J Q, ZHANG W W. Unsteady aerodynamic modeling based on deep neural network[C]//Proceedings of the 4th National Conference on Unsteady Aerodynamics, 2018(in Chinese). [84] ZHENG J, SHEN S, JIANG T, et al. Deep neural networks design and analysis for automatic phase pickers from three-component microseismic recordings[J]. Geophysical Journal International, 2020, 220(1):323-334. [85] 罗金梅, 罗建, 李艳梅, 等. 基于多特征融合CNN的人脸识别算法研究[J]. 航空计算技术, 2019(3):40-45. LUO J M, LUO J, LI Y M, et al. Face recognition algorithm based on multi-feature fusion convolution neural network[J]. Aviation Computing Technology, 2019(3):40-45(in Chinese). [86] XIAO Z L, YI N W, YING H Y. Fault diagnosis based on sparse semi-supervised gan model[C]//2020 Chinese Control And Decision Conference (CCDC), 2020:5620-5624. |