1 |
姚庆锴, 柳少军, 贺筱媛, 等. 战场目标作战意图识别问题研究与展望[J]. 指挥与控制学报, 2017, 3(2): 127-131.
|
|
YAO Q K, LIU S J, HE X Y, et al. Research and prospect of battlefield target operational intention recognition[J]. Journal of Command and Control, 2017, 3(2): 127-131 (in Chinese).
|
2 |
XIA P C, CHEN M, ZOU J, et al. Prediction of air target intention utilizing incomplete information[C]∥Chinese Intelligent Systems Conference. Singapore: Springer, 2016: 395-403.
|
3 |
陈优敏, 李长云. 基于知识图谱的目标战术意图识别仿真[J]. 计算机仿真, 2019, 36(8): 1-4, 19.
|
|
CHEN Y M, LI C Y. Simulation of target tactical intention recognition based on knowledge map[J]. Computer Simulation, 2019, 36(8): 1-4, 19 (in Chinese).
|
4 |
尹翔, 张萌, 陈梦乔. 基于判别分析的空中目标作战意图识别[J]. 弹箭与制导学报, 2018, 38(3): 46-50.
|
|
YIN X, ZHANG M, CHEN M Q. Combat intention recognition of the target in the air based on discriminant analysis[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(3): 46-50 (in Chinese).
|
5 |
XU Y H, CHENG S Y, ZHANG H B, et al. Air target combat intention identification based on IE-DSBN[C]∥2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI). Piscataway: IEEE Press, 2020: 36-40.
|
6 |
XU X M, YANG R N, FU Y. Situation assessment for air combat based on novel semi-supervised naive Bayes[J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 768-779.
|
7 |
周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39(11): 322476.
|
|
ZHOU W W, YAO P Y, ZHANG J Y, et al. Combat intention recognition for aerial targets based on deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 322476 (in Chinese).
|
8 |
翟翔宇, 杨风暴, 吉琳娜, 等. 标准化全连接残差网络空战目标威胁评估[J]. 火力与指挥控制, 2020, 45(6): 39-44.
|
|
ZHAI X Y, YANG F B, JI L N, et al. Air combat targets threat assessment based on standardized fully connected network and residual network[J]. Fire Control & Command Control, 2020, 45(6): 39-44 (in Chinese).
|
9 |
钱钊, 刘钦, 鹿瑶, 等. 基于长短时神经网络的目标意图识别[J]. 太赫兹科学与电子信息学报, 2022, 20(11): 1156-1162.
|
|
QIAN Z, LIU Q, LU Y, et al. Identification of target’s combat intention based on long short term memory network[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(11): 1156-1162 (in Chinese).
|
10 |
胡智勇, 刘华丽, 龚淑君, 等. 基于随机森林的目标意图识别[J]. 现代电子技术, 2022, 45(19): 1-8.
|
|
HU Z Y, LIU H L, GONG S J, et al. Target intention recognition based on random forest[J]. Modern Electronics Technique, 2022, 45(19): 1-8 (in Chinese).
|
11 |
TENG F, SONG Y F, GUO X P. Attention-TCN-BiGRU: An air target combat intention recognition model[J]. Mathematics, 2021, 9(19): 2412.
|
12 |
WANG S Y, WANG G, FU Q, et al. STABC-IR: An air target intention recognition method based on bidirectional gated recurrent unit and conditional random field with space-time attention mechanism[J]. Chinese Journal of Aeronautics, 2023, 36(3): 316-334.
|
13 |
TENG F, GUO X P, SONG Y F, et al. An air target tactical intention recognition model based on bidirectional GRU with attention mechanism[J]. IEEE Access, 2021, 9: 169122-169134.
|
14 |
QU C X, GUO Z C, XIA S J, et al. Intention recognition of aerial target based on deep learning[J]. Evolutionary Intelligence, 2022: 1-9.
|
15 |
BHATT D, PATEL C, TALSANIA H, et al. CNN variants for computer vision: History, architecture, application, challenges and future scope[J]. Electronics, 2021, 10(20): 2470.
|
16 |
SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306.
|
17 |
LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[DB/OL]. arXiv preprint:1506.00019, 2015.
|
18 |
LI X C, MA X F, XIAO F C, et al. Time-series production forecasting method based on the integration of Bidirectional Gated Recurrent Unit (Bi-GRU) network and Sparrow Search Algorithm (SSA)[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109309.
|
19 |
DEY R, SALEM F M. Gate-variants of Gated Recurrent Unit (GRU) neural networks[C]∥2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). Piscataway: IEEE Press, 2017: 1597-1600.
|
20 |
LINDEMANN B, MÜLLER T, VIETZ H, et al. A survey on long short-term memory networks for time series prediction[J]. Procedia CIRP, 2021, 99: 650-655.
|
21 |
CHENG J P, DONG L, LAPATA M. Long short-term memory-networks for machine reading[DB/OL]. arXiv preprint: 1601.06733, 2016.
|
22 |
GRAVES A. Long short-term memory[M]∥Supervised Sequence Labelling with Recurrent Neural Networks. Berlin: Springer, 2012: 37-45.
|
23 |
CHENG Y, WANG D, ZHOU P, et al. Model compression and acceleration for deep neural networks: The principles, progress, and challenges[J]. IEEE Signal Processing Magazine, 2018, 35(1): 126-136.
|
24 |
LA ROSA L E C, SOTHE C, FEITOSA R Q, et al. Multi-task fully convolutional network for tree species mapping in dense forests using small training hyperspectral data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 179: 35-49.
|
25 |
ELSAYED N, MAIDA A S, BAYOUMI M. Deep gated recurrent and convolutional network hybrid model for univariate time series classification[DB/OL]. arXiv preprint:1812.07683, 2018.
|
26 |
KARIM F, MAJUMDAR S, DARABI H, et al. LSTM fully convolutional networks for time series classification[J]. IEEE Access, 2017, 6: 1662-1669.
|
27 |
陈浩, 任卿龙, 滑艺, 等. 基于模糊神经网络的海面目标战术意图识别[J]. 系统工程与电子技术, 2016, 38(8): 1847-1853.
|
|
CHEN H, REN Q L, HUA Y, et al. Fuzzy neural network based tactical intention recognition for sea targets[J]. Systems Engineering and Electronics, 2016, 38(8): 1847-1853 (in Chinese).
|
28 |
朱可钦, 董彦非. 空战机动动作库设计方式研究[J]. 航空计算技术, 2001, 31(4): 50-52.
|
|
ZHU K Q, DONG Y F. Study on the design of air combat maneuver library[J]. Aeronautical Computer Technique, 2001, 31(4): 50-52 (in Chinese).
|
29 |
孙艺聪, 田润澜, 王晓峰, 等. 基于改进CLDNN的辐射源信号识别[J]. 系统工程与电子技术, 2021, 43(1): 42-47.
|
|
SUN Y C, TIAN R L, WANG X F, et al. Emitter signal recognition based on improved CLDNN[J]. Systems Engineering and Electronics, 2021, 43(1): 42-47 (in Chinese).
|
30 |
FAWAZ H I, FORESTIER G, WEBER J, et al. Deep learning for time series classification: A review[J]. Data Mining and Knowledge Discovery, 2019, 33(4): 917-963.
|
31 |
ZHAO B D, LU H Z, CHEN S F, et al. Convolutional neural networks for time series classification[J]. Journal of Systems Engineering and Electronics, 2017, 28(1): 162-169.
|
32 |
RUIZ A P, FLYNN M, LARGE J, et al. The great multivariate time series classification bake off: A review and experimental evaluation of recent algorithmic advances[J]. Data Mining and Knowledge Discovery, 2021, 35(2): 401-449.
|
33 |
PINNERI C, SAWANT S, BLAES S, et al. Sample-efficient cross-entropy method for real-time planning[DB/OL]. arXiv preprint: 2008.06389, 2020.
|
34 |
KIEFER J, WOLFOWITZ J. Stochastic estimation of the maximum of a regression function[J]. The Annals of Mathematical Statistics, 1952, 23(3): 462-466.
|
35 |
TIELEMAN T, HINTON G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012, 4(2): 26-31.
|
36 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[DB/OL]. arXiv Preprint: 1412.6980, 2014.
|
37 |
滕飞, 刘曙, 宋亚飞. BiLSTM-Attention: 一种空中目标战术意图识别模型[J]. 航空兵器, 2021, 28(5): 24-32.
|
|
TENG F, LIU S, SONG Y F. BiLSTM-attention: An air target tactical intention recognition model[J]. Aero Weaponry, 2021, 28(5): 24-32 (in Chinese).
|
38 |
ZHU W B, WEBB Z T, MAO K T, et al. A deep learning approach for process data visualization using t-distributed stochastic neighbor embedding[J]. Industrial & Engineering Chemistry Research, 2019, 58(22): 9564-9575.
|