[1] 梁栋, 高赛, 孙涵, 等. 结合核相关滤波器和深度学习的运动相机中无人机目标检测[J]. 航空学报, 2020, 41(9):323733. LIANG D, GAO S, SUN H, et al. UAV detection in motion cameras combining kernelized correlation filters and deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):323733(in Chinese). [2] 杨锋平, 马博迪, 王金荣, 等. 基于深度去噪自动编码器的无人机航空影像目标检测[J]. 西北工业大学学报, 2020, 38(6):1345-1351. YANG F P, MA B D, WANG J R, et al. Target detection of UAV aerial image based on rotational invariant depth denoising automatic encoder[J]. Journal of Northwestern Polytechnical University, 2020, 38(6):1345-1351(in Chinese). [3] 王通, 黄攀峰, 董刚奇. 启发式多无人机协同路网持续监视轨迹规划[J]. 航空学报, 2020, 41(S1):723753. WANG T, HUANG P F, DONG G Q. Cooperation path planning of multi-UAV in road-network continuous monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723753(in Chinese). [4] 张伟俊, 钟胜, 王建辉. 基于时空显著性建模的空中飞行器跟踪方法[J]. 航空学报, 2020, 41(3):323388. ZHANG W J, ZHONG S, WANG J H. Airborne target tracking based on spatio-temporal saliency modeling[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):323388(in Chinese). [5] 赵洲, 黄攀峰, 陈路. 一种融合卡尔曼滤波的改进时空上下文跟踪算法[J]. 航空学报, 2017, 38(2):274-284. ZHAO Z, HUANG P F, CHEN L. A tracking algorithm of improved spatiol-temporal context with Kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):274-284(in Chinese). [6] MA B D, LIU Z B, JIANG F H, et al. Vehicle detection in aerial images using rotation-invariant cascaded forest[J]. IEEE Access, 2019, 7:59613. [7] WANG D, FANG W, CHEN W, et al. Model update strategies about object tracking:A state of the art review[J]. Electronics, 2019, 8:1207. [8] HENRIQUES F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(3):583. [9] DANELLJAN M, GUSTAV H, KHAN F S, et al. Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference, 2014:329. [10] DANELLJAN M, GUSTAV H, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//2015 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2015:4310. [11] BERTINETTO L, VALMADRE J, HENRIQUES J, et al. Fully-Convolutional Siamese networks for object tracking[C]//European Conference on Computer Vision. Berlin:Springer, 2016:42. [12] LI B, YAN J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018:8971. [13] REN S, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//International Conference on Neural Information Processing System, 2015:91. [14] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2014:1. [15] LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]//Proceedings of the 26th Annual International Conference on Machine Learning, 2009:609. [16] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2014, 18(7):1527 [17] MNIH V, Kavukcuoglu K, Silver D, et al. Playing Atari with deep reinforcement learning[C]//Conference on Neural Information Processing Systems, 2013:1. [18] WEI S, ZHANG L, LI Y, et al. Deep descriptor transforming for image co-localization[C]//International Joint Conference on Artificial Intelligence, 2017:3048. [19] CAICEDO C, LAZEBNIK S. Active object localization with deep reinforcement learning[C]//International Conference on Computer Vision, 2015:2488. [20] ZHOU Z H, FENG J. Deep forest:Towards an alternative to deep neural networks[C]//International Joint Conference on Artificial Intelligence, 2017:3553. [21] MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking[C]//European Conference on Computer Vision. Berlin:Springer, 2016:445. [22] ZHU P F, WEN L Y, DU D W, et al. Vision meets drones:past, present and future[DB/OL]. arXiv preprint:2001.06303, 2020. [23] BHAT G, JOHNANDER J, DANELLJAN M, et al. Unveiling the power of deep tracking[C]//European Conference on Computer Vision. Berlin:Springer, 2018:172. [24] VALMADRE J, BERTINETTO L, HENRIQUES F, et al. End-to-End representation learning for correlation filter based tracking[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017:5000. [25] DANELLJAN M, BHAT G, KHAN F S, et al. ECO:Efficient convolution operators for tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6931. [26] ZHOU X, YAO C, WEN H, et al. EAST:An efficient and accurate scene text detector[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:2642. [27] ZHAO F, WANG J, WU Y, et al. Adversarial deep tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(7):1998. [28] DANELLJAN M, BHAT G, KHAN F S, et al. ATOM:Accurate tracking by overlap maximization[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:4655. [29] 任俊丽, 郭浩, 董亚飞, 等. 自适应尺度突变目标跟踪[J]. 中国图象图形学报, 2020, 25(6):1150-1159. REN J L, GUO H, DONG Y F, et al. Adaptive scale sudden change object tracking[J]. Journal of Image and Graphics,2020, 25(6):1150-1159(in Chinese). [30] JIA F, MARTIN B, MORRIS J. Non-linear principal components analysis for process fault detection[J]. Computers & Chemical Engineering, 1998, 22(S1):851-854. |