[1] IAGNEMMA K, DUBOWSKY S. Traction control of wheeled robotic vehicles in rough terrain with application to planetary rovers[J]. The International Journal of Robotics Research, 2004, 23(10-11):1029-1040. [2] ISHIGAMI G, NAGATANI K, YOSHIDA K. Slope traversal controls for planetary exploration rover on sandy terrain[J]. Journal of Field Robotics, 2009, 26(3):264-286. [3] WELCH R, LIMONADI D, MANNING R. Systems engineering the curiosity rover:A retrospective[C]//2013 8th International Conference on System of Systems Engineering, 2013:70-75. [4] ZHAO W J, WANG C. China's lunar and deep space exploration:Touching the moon and exploring the universe[J]. National Science Review, 2019, 6(6):1274-1278. [5] LI Y K, DING L, LIU G J. Error-tolerant switched robust extended Kalman filter with application to parameter estimation of wheel-soil interaction[J]. IEEE Transactions on Control Systems Technology, 2014, 22(4):1448-1460. [6] MORRIS M D. Factorial sampling plans for preliminary computational experiments[J]. Technometrics, 1991, 33(2):161-174. [7] SOBOL I M. Sensitivity estimates for nonlinear mathematical models[J]. Mathematical Modelling and Computational Experiments, 1993, 1(4):407-414. [8] MCRAC G J, TILDEN J W, SEINFELD J H. Global sensitivity analysis-A computational implementation of the Fourier amplitude sensitivity test (FAST)[J]. Computers & Chemical Engineering, 1982, 6(1):15-25. [9] NOSSENT J, ELSEN P, BAUWENS W. Sobol' sensitivity analysis of a complex environmental model[J]. Environmental Modelling & Software, 2011, 26(12):1515-1525. [10] ARWADE S R, MORADI M, LOUHGHALAM A. Variance decomposition and global sensitivity for structural systems[J]. Engineering Structures, 2010, 32(1):1-10. [11] 邓宗全, 丁亮, 高海波, 等. 月壤特性对月球车轮地相互作用力的影响[J]. 哈尔滨工业大学学报, 2010, 42(11):1724-1729. DENG Z Q, DING L, GAO H B, et al. Influence of soil properties on lunar rover' s wheel soil interaction mechanics[J]. Journal of Harbin Institute of Technology, 2011, 42(11):1724-1729(in Chinese). [12] DING L, YOSHIDA K, NAGATANI K, et al. Parameter identification for planetary soil based on a decoupled analytical wheel-soil interaction terramechanics model[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2009:4122-4127. [13] HUTANGKABODEE S, ZWEIRI Y, SENEVIRATNE L, et al. Soil parameter identification and driving force prediction for wheel-terrain interaction[J]. International Journal of Advanced Robotic Systems, 2008, 5(4):425-432. [14] SONG X G, GAO H B, DING L, et al. Diagonal recurrent neural networks for parameters identification of terrain based on wheel-soil interaction analysis[J]. Neural Computing and Applications, 2017, 28(4):797-804. [15] XUE L, LI J Q, ZOU M, et al. In situ identification of shearing parameters for loose lunar soil using least squares support vector machine[J]. Aerospace Science and Technology, 2016, 53:154-161. [16] IAGNEMMA K, KANG S, SHIBLY H, et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers[J]. IEEE Transactions on Robotics, 2004, 20(5):921-927. [17] LI Y K, DING L, ZHENG Z Z, et al. A multi-mode real-time terrain parameter estimation method for wheeled motion control of mobile robots[J]. Mechanical Systems and Signal Processing, 2018, 104:758-775. [18] BEKKER M G. Introduction to terrain-vehicle systems[M]. Ann Arbor:The University of Michigan Press, 1969. [19] DING L, GAO H B, DENG Z Q, et al. New perspective on characterizing pressure-sinkage relationship of terrains for estimating interaction mechanics[J]. Journal of Terramechanics, 2014, 52:57-76. [20] JANOSI Z, HANAMOTO B. Analytical determination of drawbar pull as a function of slip for tracked vehicle in deformable soils[C]//Proceedings of the 1 st International Conference of ISTVES, 1961:707-726. [21] SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics & Computers in Simulation, 2001, 55(1-3):271-280. [22] SOBOL I M. Theorems and examples on high dimensional model representation[J]. Reliability Engineering & System Safety, 2003, 79(2):187-193. [23] HOMMA T, SALTELLI A. Importance measures in global sensitivity analysis of nonlinear models[J]. Reliability Engineering & System Safety, 1996, 52(1):1-17. [24] WONG J Y. Theory of ground vehicles[M]. New York:Wiley, 2008. [25] SHIBLY H, IAGNEMMA K, DUBOWSKY S. An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers[J]. Journal of Terramechanics, 2005, 42(1):1-13. [26] SKONIECZNY K, SHUKLA D K, FARAGALLI M, et al. Data-driven mobility risk prediction for plane-tary rovers[J]. Journal of Field Robotics, 2019, 36(2):475-491. [27] GONZALEZ R, LAGNEMMA K. Slippage estimation and compensation for planetary exploration rovers. State of the art and future challenges[J]. Journal of Field Robotics, 2018, 35(4):564-577. [28] MAIMONE M, CHENG Y, MATTHIES L. Two years of visual odometry on the Mars exploration rovers[J]. Journal of Field Robotics, 2007, 24(3):169-186. [29] DING L, GAO H B, LI Y K, et al. Improved explicit-form equations for estimating dynamic wheel sinkage and compaction resistance on deformable terrain[J]. Mechanism & Machine Theory, 2015, 86:235-264. |